Search

found 88 results

Images, UC QuakeStudies

A man takes a photograph inside a damaged house in Richmond. The photographer comments, "Revisiting our abandoned house. Photographing the dining room, note the cracked wall linings. (My brother Ross from Invercargill was visiting, he's in several of these)".

Images, UC QuakeStudies

Damage to the south-west corner of the Cathedral of the Blessed Sacrament. A section of wall has collapsed, exposing the rooms within. Some of the stones have fallen onto a vehicle parked nearby. The photographer comments, "A bike ride around the CBD. Catholic Cathedral, Barbadoes St".

Images, UC QuakeStudies

Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. The photographer comments, "Revisiting our abandoned house. Back door and the floor of the sunroom".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper below. The photographer comments, "These photos show our old house in River Rd. Bricks are skewed and pulled in several directions".

Images, UC QuakeStudies

A stone gable wall of one of the buildings of the Beulah Christian Fellowship has partly collapsed, damaging the roof below. The photographer comments, "A bike ride around the CBD. I think this must be part of the Beulah Christian Fellowship. Taken from Edgeware Rd".

Images, UC QuakeStudies

Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. The photographer comments, "Revisiting our abandoned house. Temporary protection after the sunroom was demolished".

Images, UC QuakeStudies

Damage to the Crichton Cobbers Youth and Community Club. Large sections of the brick walls have collapsed, and two large beams lie across the rubble. Cordon fencing surrounds this and nearby buildings. The photographer comments, "A bike ride around the CBD. Old brewery, later a gym - Fitzgerald Ave".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. I think it's broken".

Images, UC QuakeStudies

Damage to the Crichton Cobbers Youth and Community Club. Large sections of the brick walls have collapsed, and two large beams lie across the rubble. Cordon fencing surrounds this and nearby buildings. The photographer comments, "A bike ride around the CBD. Old brewery, later a gym - Fitzgerald Ave".

Images, UC QuakeStudies

Damage to a house in Richmond. Bricks have fallen from the walls, exposing the wooden framing beneath. Power lines between the house and a power pole have been stretched taut. The photographer comments, "The house and power pole have moved, stretching power lines taut as a guitar string".

Images, UC QuakeStudies

A man takes a photograph in the kitchen of a damaged house in Richmond. Behind him, cracks are visible in the walls. The photographer comments, "Revisiting our abandoned house. Kitchen and dining area. (My brother Ross from Invercargill was visiting, he's in several of these)".

Images, UC QuakeStudies

Internal damage to a house in Richmond. A large crack in the wallboard below a window has exposed the bricks, and the skirting board has moved away from the floor. The photographer comments, "Cracks in the wall of the sunroom. This is the interior view of the crack in the previous shot".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The driveway is badly cracked and buckled. The photographer comments, "These photos show our old house in River Rd. The brick garage just collapsed, pulling the gate over as it fell".

Images, eqnz.chch.2010

Victoria Apartments demolition is under way on a walk around the city to find out what is happening in the city. Feb 17, 2014 Christchurch New Zealand. "soft-stripped", which means that any remaining belongings will be removed, as well as furnishings and internal walls.

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Common area. More offices run along the north wall at the left. Through the doors are the male toilets and a stair well".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Common area. How will we make use of this large open area? Our offices are behind the glass wall, facing south".

Research papers, University of Canterbury Library

Research following the 2010-2011 Canterbury earthquakes investigated the minimum vertical reinforcement required in RC walls to generate well distributed cracking in the plastic hinge region. However, the influence of the loading sequence and rate has not been fully addressed. The new minimum vertical reinforcement limits in NZS 3101:2006 (Amendment 3) include consideration of the material strengths under dynamic load rates, but these provisions have not been validated at a member or system level. A series of tests were conducted on RC prisms to investigate the effect of loading rate and sequence on the local behaviour of RC members. Fifteen axially loaded RC prisms with the designs representing the end region of RC walls were tested under various loading rates to cover the range of pseudo-static and earthquake loading scenarios. These tests will provide substantial data for understanding the local behaviour of RC members, including hysteretic load-deformation behaviour, crack patterns, failure mode, steel strain, strain rate and ductility. Recommendations will be made regarding the effect of loading rate and reinforcement content on the cracking behaviour and ductility of RC members.

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed, and a gap is visible between the house and its foundation. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The house and the concrete patio are now 15cm apart. The house took half the dining room's remaining bricks with it as it jumped off the foundations. It gives a good visual indication of the displacement".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The neighbours behind us used the kayak to get in to their house - it's flooded by Dudley Creek which runs behind the block, plus major liquefaction. Our old garage provides a good spot to park it".

Images, UC QuakeStudies

Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. Weeds grow between cracks in the concrete patio. The photographer comments, "Revisiting our abandoned house. Cracked patio. The wooden floor is all that remains of a sunny living space with bifold doors, opening the house to the garden. This was so broken on 4/9/10 that it was immediately demolished".

Images, UC QuakeStudies

Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking along the south wall, Herbert Thomas and Susan Tull already settled in and working".

Images, UC QuakeStudies

Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Nikki Saunders, Lei Zhang (on the far wall), Nathan Gardiner and Blair - unpacking and settling in".

Images, UC QuakeStudies

Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking back along the centre area from the doors. The e-learning advisers and Herbert Thomas, our team leader, sit along the south wall".

Research papers, University of Canterbury Library

Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.

Research papers, The University of Auckland Library

A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.