A copy of the CanCERN online newsletter published on 15 February 2013
A copy of the CanCERN online newsletter published on 8 February 2013
The "Lyttelton Review" newsletter for 20 February 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 30 July 2012, produced by the Lyttelton Harbour Information Centre.
A copy of the CanCERN online newsletter published on 4 May 2012
The "Lyttelton Harbour Review" newsletter for 29 July 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 26 March 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 19 March 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 17 February 2013, produced by the Lyttelton Harbour Information Centre.
Christchurch City Council (Council) is undertaking the Land Drainage Recovery Programme in order to assess the effects of the earthquakes on flood risk to Christchurch. In the course of these investigations it has become better understood that floodplain management should be considered in a multi natural hazards context. Council have therefore engaged the Jacobs, Beca, University of Canterbury, and HR Wallingford project team to investigate the multihazards in eastern areas of Christchurch and develop flood management options which also consider other natural hazards in that context (i.e. how other hazards contribute to flooding both through temporal and spatial coincidence). The study has three stages: Stage 1 Gap Analysis – assessment of information known, identification of gaps and studies required to fill the gaps. Stage 2 Hazard Studies – a gap filling stage with the studies identified in Stage 1. Stage 3 Collating, Optioneering and Reporting – development of options to manage flood risk. This present report is to document findings of Stage 1 and recommends the studies that should be completed for Stage 2. It has also been important to consider how Stage 3 would be delivered and the gaps are prioritised to provide for this. The level of information available and hazards to consider is extensive; requiring this report to be made up of five parts each identifying individual gaps. A process of identifying information for individual hazards in Christchurch has been undertaken and documented (Part 1) followed by assessing the spatial co-location (Part 2) and probabilistic presence of multi hazards using available information. Part 3 considers multi hazard presence both as a temporal coincidence (e.g. an earthquake and flood occurring at one time) and as a cascade sequence (e.g. earthquake followed by a flood at some point in the future). Council have already undertaken a number of options studies for managing flood risk and these are documented in Part 4. Finally Part 5 provides the Gap Analysis Summary and Recommendations to Council. The key findings of Stage 1 gap analysis are: - The spatial analysis showed eastern Christchurch has a large number of hazards present with only 20% of the study area not being affected by any of the hazards mapped. Over 20% of the study area is exposed to four or more hazards at the frequencies and data available. - The majority of the Residential Red Zone is strongly exposed to multiple hazards, with 86% of the area being exposed to 4 or more hazards, and 24% being exposed to 6 or more hazards. - A wide number of gaps are present; however, prioritisation needs to consider the level of benefit and risks associated with not undertaking the studies. In light of this 10 studies ranging in scale are recommended to be done for the project team to complete the present scope of Stage 3. - Stage 3 will need to consider a number of engineering options to address hazards and compare with policy options; however, Council have not established a consistent policy on managed retreat that can be applied for equal comparison; without which substantial assumptions are required. We recommend Council undertake a study to define a managed retreat framework as an option for the city. - In undertaking Stage 1 with floodplain management as the focal point in a multi hazards context we have identified that Stage 3 requires consideration of options in the context of economics, implementation and residual risk. Presently the scope of work will provide a level of definition for floodplain options; however, this will not be at equal levels of detail for other hazard management options. Therefore, we recommend Council considers undertaking other studies with those key hazards (e.g. Coastal Hazards) as a focal point and identifies the engineering options to address such hazards. Doing so will provide equal levels of information for Council to make an informed and defendable decision on which options are progressed following Stage 3.
INTRODUCTION: Connections between environmental factors and mental health issues have been postulated in many different countries around the world. Previously undertaken research has shown many possible connections between these fields, especially in relation to air quality and extreme weather events. However, research on this subject is lacking in New Zealand, which is difficult to analyse as an overall nation due to its many micro-climates and regional differences.OBJECTIVES: The aim of this study and subsequent analysis is to explore the associations between environmental factors and poor mental health outcomes in New Zealand by region and predict the number of people with mental health-related illnesses corresponding to the environmental influence.METHODS: Data are collected from various public-available sources, e.g., Stats NZ and Coronial services of New Zealand, which comprised four environmental factors of our interest and two mental health indicators data ranging from 2016 up until 2020. The four environmental factors are air pollution, earthquakes, rainfall and temperature. Two mental health indicators include the number of people seen by District Health Boards (DHBs) for mental health reasons and the statistics on suicide deaths. The initial analysis is carried out on which regions were most affected by the chosen environmental factors. Further analysis using Auto-Regressive Integrated Moving Average(ARIMA) creates a model based on time series of environmental data to generate estimation for the next two years and mental health projected from the ridge regression.RESULTS: In our initial analysis, the environmental data was graphed along with mental health outcomes in regional charts to identify possible associations. Different regions of New Zealand demonstrate quite different relationships between the environmental data and mental health outcomes. The result of later analysis predicts that the suicide rate and DHB mental health visits may increase in Wellington, drop-in Hawke's Bay and slightly increase in Canterbury for the year 2021 and 2022 with different environmental factors considered.CONCLUSION: It is evident that the relationship between environmental and mental health factors is regional and not national due to the many micro-climates that exist around the nation. However, it was observed that not all factors displayed a good relationship between the regions. We conclude that our hypotheses were partially correct, in that increased air pollution was found to correlate to increased mental health-related DHB visits. Rainfall was also highly correlated to some mental health outcomes. Higher levels of rainfall reduced DHB visits and suicide rates in some areas of the country.
Transcript of Lou's earthquake story, captured by the UC QuakeBox project.
Summary of oral history interview with Kath Graham about her experiences of the Canterbury earthquakes.
The "Lyttelton Review" newsletter for 21 November 2011, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 13 May 2013, produced by the Lyttelton Harbour Information Centre.
A copy of the CanCERN online newsletter published on 6 June 2014
The "Lyttelton Harbour Review" newsletter for 4 March 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 12 March 2012, produced by the Lyttelton Harbour Information Centre.
This report is the output of a longitudinal study that was established between the University of Auckland and Resilient Organisations, in conjunction with the Building Research Association of New Zealand (BRANZ), to evaluate the ongoing resource availability and capacity for post-earthquake reconstruction in Christchurch.
A pdf transcript of Marnie Kent's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Joshua Black. Transcriber: Caleb Middendorf.
A pdf transcript of Jan's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
A pdf transcript of John's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
A pdf transcript of Participant number QB005's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A pdf transcript of Participant number LY967's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
Transcript of Jan Dobson's earthquake story, captured by the UC QuakeBox project.
A pdf transcript of Andrea's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
Earthquakes impacting on the built environment can generate significant volumes of waste, often overwhelming existing waste management capacities. Earthquake waste can pose a public and environmental health hazard and can become a road block on the road to recovery. Specific research has been developed at the University of Canterbury to go beyond the current perception of disaster waste as a logistical hurdle, to a realisation that disaster waste management is part of the overall recovery process and can be planned for effectively. Disaster waste decision-makers, often constrained by inappropriate institutional frameworks, are faced with conflicting social, economic and environmental drivers which all impact on the overall recovery. Framed around L’Aquila earthquake, Italy, 2009, this paper discusses the social, economic and environmental effects of earthquake waste management and the impact of existing institutional frameworks (legal, financial and organisational). The paper concludes by discussing how to plan for earthquake waste management.
A pdf transcript of Stephen Bourke's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
Actor Tony Robinson at the "I hope Christchurch will..." blackboard, a mural on the corner of Colombo and Tuam Streets. Members of the public were invited to fill in the gaps with what they would like to see in the rebuilt city. Messages can be seen, such as, "I want sun!", "Embrace the new", "Retain its unique character", "Rise, and rise, and rise", "Rebuild to be better and stronger than before!" and "Environmentally friendly".
Summary of oral history interview with Mary Hobbs about her experiences of the Canterbury earthquakes.