A document which describes the process that SCIRT took to repair the Sumner Road retaining wall - stage 4.
An entry from Deborah Fitchett's blog for 27 December 2010, posted to Dreamwidth. The entry is titled, "In which she notes several things too small for their own posts".The entry was downloaded on 17 April 2015.
An entry from Deborah Fitchett's blog for 27 December 2010, posted to Livejournal. The entry is titled, "In which she notes several things too small for their own posts".The entry was downloaded on 14 April 2015.
A sign for Gravity Coffee on Victoria Street reading, "Don't fall for anything else".
Surveyors marking out Kirkwood Village, used as temporary teaching and office space for the University of Canterbury. The photographer comments, "Measuring up for the Kirkwood village".
Photograph captioned by BeckerFraserPhotos, "86-106 Manchester Street. Foundations for a new building for EPIC technology centre".
After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner’s insurance. Most people chose the second option. Using data from LINZ combined with data from StatNZ, this project empirically investigates what led people to choose this second option, and what were the implications of these choices for the owners’ wealth and income.
A satirical sign for Tui Beer on the side of a bar in Sydenham reading, "Earthquake? We closed for renovations. Yeah right. Tui".
A plaque at 83 Clyde Road explaining that the residence was where she campaigned for votes for women.
A Christmas tree erected on the building site for the temporary "cardboard cathedral". The base of the support framework for the cathedral is visible behind the tree.
A document describing the use of 3D modelling for construction methodology.
This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.
The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.
A diagram which illustrates the proposed structure of an industry-wide training advisory board.
A paper for the SCIRT Board which requests that the Board provide support to recruit a Project Manager to support the development of a civil trade qualification.
A pdf copy of a post from the One Voice Te Reo Kotahi blog. The post is titled, "reminder for upcoming forum".
An award application for the Civil Contractors New Zealand 2015 awards. SCIRT was a finalist in the "Connexis Company Training and Development Award - Large Company" category.
A best practice traffic management guideline, produced in February 2014, which helps traffic management team members slow motorists through road work sites safely.
This thesis describes the management process of innovation through construction infrastructure projects. This research focuses on the innovation management process at the project level from four views. These are categorised into the separate yet related areas of: “innovation definition”, “Project time”, “project team motivation” and “Project temporary organisation”. A practical knowledge is developed for each of these research areas that enables project practitioners to make the best decision for the right type of innovation at the right phase of projects, through a capable project organisation. The research developed a holistic view on both innovation and the construction infrastructure project as two complex phenomena. An infrastructure project is a long-term capital investment, highly risky and an uncertain. Infrastructure projects can play a key role in innovation and performance improvement throughout the construction industry. The delivery of an infrastructure project is affected in most cases by critical issues of budget constraint, programme delays and safety Where the business climate is characterized by uncertainty, risk and a high level of technological change, construction infrastructure projects are unable to cope with the requirement to develop innovation. Innovation in infrastructure projects, as one of the key performance indicators (KPI) has been identified as a critical capability for performance improvement through the industry. However, in spite of the importance of infrastructure projects in improving innovation, there are a few research efforts that have developed a comprehensive view on the project context and its drivers and inhibitors for innovation in the construction industry. Two main reasons are given as the inhibitors through the process of comprehensive research on innovation management in construction. The first reason is the absence of an understanding of innovation itself. The second is a bias towards research at a firm and individual level, so a comprehensive assessment of project-related factors and their effects on innovation in infrastructure projects has not been undertaken. This study overcomes these issues by adopting as a case study approach of a successful infrastructure project. This research examines more than 500 construction innovations generated by a unique infrastructure alliance. SCIRT (Stronger Christchurch Infrastructure Rebuild Team) is a temporary alliancing organisation that was created to rebuild and recover the damaged infrastructure after the Christchurch 2011 earthquake. Researchers were given full access to the innovation project information and innovation systems under a contract with SCIRT Learning Legacy, provided the research with material which is critical for understanding innovations in large, complex alliancing infrastructure organisation. In this research, an innovation classification model was first constructed. Clear definitions have been developed for six types of construction innovation with a variety of level of novelties and benefits. The innovation classification model was applied on the SCIRT innovation database and the resultant trends and behaviours of different types of innovation are presented. The trends and behaviours through different types of SCIRT innovations developed a unique opportunity to research the projectrelated factors and their effect on the behaviour of different classified types of innovation throughout the project’s lifecycle. The result was the identification of specific characteristics of an infrastructure project that affect the innovation management process at the project level. These were categorised in four separate chapters. The first study presents the relationship between six classified types of innovation, the level of novelty and the benefit they come up with, by applying the innovation classification model on SCIRT innovation database. The second study focused on the innovation potential and limitations in different project lifecycle phases by using a logic relationship between the six classified types of innovation and the three classified phases of the SCIRT project. The third study result develops a holistic view of different elements of the SCIRT motivation system and results in a relationship between the maturity level of definition developed for innovation as one of the KPIs and a desire though the SCIRT innovation incentive system to motivate more important innovations throughout the project. The fourth study is about the role of the project’s temporary organisation that finally results in a multiple-view innovation model being developed for project organisation capability assessment in the construction industry. The result of this thesis provides practical and instrumental knowledge to be used by a project practitioner. Benefits of the current thesis could be categorized in four groups. The first group is the innovation classification model that provides a clear definition for six classified types of innovation with four levels of novelty and specifically defined outcomes and the relationship between the innovation types, novelty and benefit. The second is the ability that is provided for the project practitioner to make the best decision for the right type of innovation at the right phases of a project’s lifecycle. The third is an optimisation that is applied on the SCIRT innovation motivation system that enables the project practitioner to incentivize the right type of innovation with the right level of financial gain. This drives the project teams to develop a more important innovation instead of a simple problemsolving one. Finally, the last and probably more important benefit is the recommended multiple-view innovation model. This is a tool that could be used by a project practitioner in order to empower the project team to support innovation throughout the project.
Paul Nicholls from the University of Canterbury's E-Learning team and Digital Media Group Manager Wayne Riggall in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Adjoining our area is a space for Wayne, the Digital Media Group Manager, who will organise a sitting area for visitors and small meetings. Beyond Wayne is a closed-off meeting room".
A photograph of the back page of a Christchurch City Council form. The form allowed contractors to apply for the authorisation to enter the Christchurch Red Zone after the 22 February 2011 earthquake. Information on the back reads, "What does this authorisation mean for me? I am wearing appropriate personal protection clothing and equipment. At all times DO NOT enter any red placarded building. You may enter a yellow placarded building for a period of time (no longer than 30 minutes) and follow the instruction of the escorts. A green placarded building may be accessed for longer periods. Please note: do not enter any buildings which are not for the purpose of your authorisation".
A copy of Hugo Kristinsson's profile statement for the 2013 Christchurch Local Body Elections. Kristinsson ran for Christchurch Mayor during this election.
Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).
A paper prepared for the Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 44, no. 4, December 2011.
A paper prepared for the Water New Zealand 2014 conference which considers resilience lessons for reservoirs, pump stations and pipelines.
A plan which outlines the scope, approach and key deliverables for communications and stakeholder engagement for SCIRT. The first version of this plan was produced on 7 January 2013.
One of the tents set up in the Fine Arts car park at the University of Canterbury, used for teaching while lecture theatres were closed for structural testing. The photographer comments, "Temporary lecture tents".
An award application submitted for the IPWEA Annual Excellence Awards 2016, detailing Fulton Hogan's work repairing the repair methodology for the Sumner Road retaining wall - stage 4.
Photograph captioned by BeckerFraserPhotos, "The lawn has not been mown at the rear of the Town Hall for a year and provides plently of feed for the ducks".
Tents set up in the Fine Arts car park at the University of Canterbury, used for teaching while lecture theatres were closed for structural testing. The photographer comments, "The 'tent city' on the Arts car park".