Search

found 18124 results

Images, UC QuakeStudies

The northern side of the Christ Church Cathedral with the cafe and store in the foreground. Shipping containers have been placed around the eastern side of the Cathedral to protect the road from falling debris. Wire fencing has also been placed around the building as a cordon. To the right, the damaged and party deconstructed tower can be seen with the missing spire which fell during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A car drives onto the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".

Images, UC QuakeStudies

A photograph of the platform for the Townsend Telescope amongst the rubble of the Observatory tower at the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake, severely damaging the telescope.

Images, UC QuakeStudies

Part of the forecourt at the Shell Shirley petrol station has lifted above the rest, after the underground petrol tanks were pushed upwards by liquefaction. Liquefaction silt covers the lower part of the forecourt. The photographer comments, "Tanks at Shell Shirley floated out of the ground".

Images, UC QuakeStudies

A car drives onto the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".

Images, UC QuakeStudies

A man takes a photograph of the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge, north side".

Research papers, The University of Auckland Library

This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.

Images, UC QuakeStudies

A plaque on the ground in front of the 'Passing Time' sculpture on the corner of Madras Street and St Asaph Street. The 'Passing Time' sculpture was installed outside the CPIT Building for the 6th SCAPE (a contemporary public art programme in Christchurch) a few days prior to the 22 February 2011 earthquake. The work features twisting boxes depicting each year between 1906 (the founding of CPIT) and 2010 (the date of the sculpture's production).

Images, UC QuakeStudies

A photograph of the entrance to the Brannigan's building on the corner of Gloucester Street and Oxford Terrace. Many of the windows down the centre of the building have broken, and the glass has fallen onto the footpath below. USAR codes have been spray painted on one of the front windows. A red sticker in the door indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A panoramic photograph looking south out of a window of the PricewaterhouseCoopers Building. Notable landmarks include: New Regent Street and the Rendezvous Hotel on the left side of the photograph; the Novotel in the centre; the Lyttelton Times building and the Forsyth Barr building to the right; and the Hotel Grand Chancellor in the distance.

Images, UC QuakeStudies

A photograph of the largest section of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the spire of ChristChurch Cathedral sitting on the ground in Cathedral Square. The photograph is captioned by BeckerFraserPhotos, "The dry summer grass shows the passing of the seasons while the top of the spire of the ChristChurch Cathedral stays still".

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. The tops of the gables of the section of the building on the corner have crumbled. Ties have been placed around all of the gables as bracing.

Research papers, The University of Auckland Library

High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.

Images, UC QuakeStudies

Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking up the centre of the room towards the front doors. The video conferencing team and Nikki Saunders, the course reader publisher, sit here. (The pizzas are for a moving-in celebration held just after I took these photos.)

Images, UC QuakeStudies

An aerial photograph of Manchester Street near Cambridge Terrace. The photograph has been captioned by BeckerFraserPhotos, "The new Christchurch emerges - more colourful than before. The tree wrapped in high visibility is another project from artist Peter Majendie. The newly planted grass on the right hand side of the photo is on the PGC site and an adjoining site and is a CERA initiative. In the foreground of the photos the former site of St Luke's is now attractively laid out, while the splendour of the trees on the site can be fully appreciated".

Images, UC QuakeStudies

A photograph of the earthquake damage to the Avonmore House on the corner of Hereford Street and Latimer Square. Large cracks have formed in the building, causing sections of the masonry to crumble. The windows on the Hereford Street side of the building have bent out of shape and many of the glass panes have shattered. USAR codes have been spray painted on the column next to the door. In the distance wire fencing has been placed across the street as a cordon.

Images, UC QuakeStudies

A photograph submitted by Scott Thomas to the QuakeStories website. The description reads, "The two separate piles of dirt outside on the street from mine and the 5 other townhouses I share my driveway with. In the distance you can see rubble on the ground and if you look carefully you can make out the bumps where the energy released has warped the road. Taken 28 February 2011.".

Images, UC QuakeStudies

A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of staff from the Department of Physics and Astronomy from the University of Canterbury recovering parts of the Townsend Telescope from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Looking south west across Cathedral Square showing the eastern side of Christchurch Cathedral (left), the Godley statue (centre left) with the (from left to right) Chief Post Office, the Regent Theatre Building (directly behind the statue on the corner of Worcester Street), the AMP Building, the Government Life Building and the Grand Theatre.

Images, UC QuakeStudies

A photograph of the earthquake damage to the John Burns & Co. Ltd building on Lichfield Street. The top section of the side wall has collapsed and the bricks have spilled onto the car park below, exposing the inside of the building. Several crushed cars have been removed from the car park and stacked on the street.

Images, UC QuakeStudies

A photograph looking south out a window of the PricewaterhouseCoopers Building. Notable landmarks include: New Regent Street and the Rendezvous Hotel on the left side of the photograph; the Novotel in the centre; the Lyttelton Times building to the right; and the Hotel Grand Chancellor in the background.

Images, UC QuakeStudies

A photograph of the earthquake damage to the John Burns & Co. Ltd building on Lichfield Street. The top section of the side wall has collapsed and the bricks have spilled onto the car park below, exposing the inside of the building. Several crushed cars have been removed from the car park and stacked on the street.

Images, UC QuakeStudies

A photograph of an earthquake-damaged building in Christchurch. The wall on the side of the house has crumbled, and the bricks have fallen onto the fence and damaged it. Wooden planks have been used to brace the wall towards the back of the property. A red sticker on the front window indicates that the house is unsafe to enter.