Search

found 1406 results

Audio, Radio New Zealand

After a damning report into the CTV building, how many other Christchurch buildings had faults when the earthquake struck? Police investigate the tragic death of a five year old and when so many businesses are struggling, how did the country's big banks increase profits by a quarter?

Articles, Christchurch uncovered

As life-changing experiences go, the earthquake on 22 February 2011 was fairly significant. On the one hand, our house was red-zoned (but still liveable), friends lost their lives and the city lost many of the old buildings that, for me, … Continue reading →

Images, UC QuakeStudies

A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. A mural has been painted on a brick wall. Behind this, the old Post Office building which now houses C1 Espresso can be seen with Ronnie Van Hout's sculpture on the roof.

Images, UC QuakeStudies

A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. A mural has been painted on a brick wall. Behind this is the old Post Office building (now C1 Espresso). There is a sculpture by Ronnie Van Hout on the roof.

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need for reinforcement. The clock has stopped at around 16:35, the time of the earthquake.

Images, UC QuakeStudies

Liquefaction silt covers the ground in front of the Shirley Medical Centre, and more silt is piled beside the entrance. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The local medical centre is seriously silted up".

Images, UC QuakeStudies

Liquefaction silt covers the ground in front of the Shirley Medical Centre, and more silt is piled beside the entrance. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The local medical centre is seriously silted up".

Images, UC QuakeStudies

The driveway has collapsed into a large sink hole in front of the Shirley Burger King. Warning tape cordons off the area. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Shirley Burger King has driveway issues".

Images, UC QuakeStudies

Damage to the garden of a house in Richmond. Liquefaction is visible among the plants and on the driveway. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Back lawn under 10cm of water and silt".

Images, UC QuakeStudies

Damage to the Crichton Cobbers Youth and Community Club. Large sections of the brick walls have collapsed, and two large beams lie across the rubble. Cordon fencing surrounds this and nearby buildings. The photographer comments, "A bike ride around the CBD. Old brewery, later a gym - Fitzgerald Ave".

Images, UC QuakeStudies

Damage to the Crichton Cobbers Youth and Community Club. Large sections of the brick walls have collapsed, and two large beams lie across the rubble. Cordon fencing surrounds this and nearby buildings. The photographer comments, "A bike ride around the CBD. Old brewery, later a gym - Fitzgerald Ave".

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Images, eqnz.chch.2010

Sadly the Chapel has been badly damaged in the magnitude 6.3 earthquake that hit Christchurch 22 February 2011. See below. The Rose Historic Chapel formerly St Mary’s Convent Chapel is the sole survivor of a group of heritage buildings in Christchurch that once comprised the St Mary’s Convent complex for the Sisters of Mercy in North Colombo St...

Images, Alexander Turnbull Library

Text reads 'City's old chimneys are considered the no. 1 earthquake danger'. Below are several angry-looking chimneys which sing 'Chim chim-in-ey. Chim chim-in-ey, chim chim cher-oo! When the big shake's on - we're coming to get you!' Context - Invercargill City council building services manager Simon Tonkin has seen first-hand the massive damage falling chimneys inflicted on homes and nearby vehicles following the massive Christchurch quake, and says that Invercargill's old brick chimneys are the No1 danger to the city's residents and homes if a major earthquake strikes and should be removed if they are not being used. (Southland Times 6 April 2011) Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.