Search

found 847 results

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.

Research Papers, Lincoln University

The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.On 2 March 1987 the Bay of Plenty region suffered an earthquake of magnitude 6.3 on the Richter scale, centred at Edgecumbe. Severe damage to personal and industrial property and drainage systems occurred. In hindsight, although much of the damage was covered by insurance, loans, public and government contributions, the continuing reconstruction costs have had a tremendous impact financially on individuals and the District as a whole. By highlighting some of these ongoing costs and suggestions of alternatives other Rural communities may be better prepared to lessen the effect of a natural disaster such as the Edgecumbe Earthquake of 1987.

Images, eqnz.chch.2010

Edgeware Supervalue Supermarket being demolished after the 6.3 magnitude quake hit Christchurch 22 February 2011. ♥An attempt to capture the movement of the wall coming down with 3 exposure and HDR processing.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. The last damaged spire-top is removed from the church tower, secured to the crane by St. Mary's parishioner Craig Perkins (obscured) and builder Kevin Deam".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield . (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins are hoisted by crane to remove the last damaged spire from the church tower".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins are hoisted by crane to remove the last damaged spire from the church tower".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield . The final damaged spire is removed from the church tower by crane, secured by (L to R): St. Mary's parishioner Craig Perkins and builder Kevin Deam".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins are moved into position by crane to remove damaged spire-tops from the church tower".

Images, eqnz.chch.2010

For Best View Press"L" All 23 Arts Centre heritage buildings received significant damage in the earthquake and its subsequent aftershocks, and all have been issued with a red “Unsafe” placard. As a result of the magnitude of this damage, the Arts Centre Trust Board— the body charged with ensuring this iconic precinct is preserved and pr...

Images, Alexander Turnbull Library

Text reads 'The earth takes... the world gives'. The cartoon shows an image of the globe with New Zealand in the centre - the continents seem to have formed themselves into a grieving face and arms which reach out to New Zealand. Context - on 22 February 2011 a 6.3 magnitude earthquake struck in Christchurch which has probably killed more than 200 people (at this point the number is still not known) and caused very severe damage. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

Monday marks ten years since the Christchurch earthquake shattered New Zealand's second largest city. One-hundred-and-eighty five people lost their lives when a magnitude 6.2 quake shook the city apart. David Berry was one of the first responders in the city centre as part of Urban Search and Rescue. He speaks to Corin Dann.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Prime Minister John Key, centre, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker, facing at left, took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield . (L to R): St. Mary's parishioner Craig Perkins and builder Kevin Deam are moved into position by crane to remove the last damaged spire from the church tower".

Audio, Radio New Zealand

It's seven years today since Christchurch was rocked by the magnitude 6.3 earthquake. It killed 185 people, injured thousands more and led to whole suburbs and most of the central city being demolished. Seven years on, the rebuild is still underway and some residents are still struggling to get the repairs they want.

Images, eqnz.chch.2010

A magnitude 7.1 earthquake occurred at 4:35 am on September 4, 2010 here in Christchurch. There was damage and destruction to buildings but no loss of life. Five months later (22nd Feb, 2011) the city was struck by another quake. This time we weren't so lucky. 185 people lost their lives. Many people lost homes and businesses. The central b...

Research papers, University of Canterbury Library

The Porters Pass fault (PPF) is a prominent element of the Porters Pass-Amberley Fault Zone (PPAFZ) which forms a broad zone of active earth deformation ca 100 km long, 60-90 km west and north of Christchurch. For a distance of ca 40 km the PPF is defined by a series of discontinuous Holocene active traces between the Rakaia and Waimakariri Rivers. The amount of slip/event and the timing of paleoearthquakes are crucial components needed to estimate the earthquake potential of a fault. Movement was assumed to be, coseismic and was quantified by measuring displaced geomorphic features using either tape measure or surveying equipment. Clustering of offset data suggests that four to five earthquakes occurred on the PPF during the Holocene and these range between ca 5-7 m/event. Timing information was obtained from four trenches excavated across the fault and an auger adjacent to the fault. Organic samples from these sites were radiocarbon dated and used in conjunction with data from previous studies to identify the occurrence of at least four earthquakes at 8500 ± 200, 5300 ± 700, 2500 ± 200 and 1000 ± 100 years B.P. Evidence suggests that an additional event is also possible at 6200 ± 500 years B.P. The ~1000, 5300 and 6200 years B.P. paleoearthquakes were previously unrecognised, while the 500 year event previously inferred from rock-avalanche data has been discarded. The present data set produces recurrence intervals of ~2000-2500 years for the Holocene. The identification of only one Holocene PPF rupture to the west of Red Lakes indicates the presence of a segment boundary that prevents the propagation of rupture beyond this point. This is consistent with displacement data and results in slip rates of 0.5-0.7 mm/yr and 2.5-3.4 mm/yr to the west and east of Red Lakes respectively. It is possible that the nearby extensional Red Hill Fault influences PPF rupture propagation. The combination of geometric, slip rate and timing data has enabled the magnitude of prehistoric earthquakes on the PPF to be estimated. These magnitudes range from an average of between 6.9 for a fault rupture from Waimakariri River to Red Lakes, to a maximum of 7.4 that ruptures the entire length of the PPAFZ, including the full length of the PPF. These estimates are approximately consistent with previous magnitude estimates along the full length of the PPAFZ of between 7.0 and 7.5.

Images, Alexander Turnbull Library

A policeman and his dog stop outside a house wrecked in the Christchurch earthquake and phone for assistance saying 'Have found signs of low-life' because he can see 'Christchurch looting in progress'. Context - on 22 February 2011 a 6.3 magnitude earthquake struck in Christchurch, which has probably killed more than 200 people (at this point the number is still not known) and caused very severe damage. The courage, generosity and 'can do' attitude of the people has been wonderful apart from the antisocial behaviour of a few looters and others taking advantage of the situation. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.

Research papers, The University of Auckland Library

Two days after the 22 February 2011 M6.3 earthquake in Christchurch, New Zealand, three of the authors conducted a transect of the central city, with the goal of deriving an estimate of building damage levels. Although smaller in magnitude than the M7.1 4 September 2010 Darfield earthquake, the ground accelerations, ground deformation and damage levels in Christchurch central city were more severe in February 2011, and the central city was closed down to the general public. Written and photographic notes of 295 buildings were taken, including construction type, damage level, and whether the building would likely need to be demolished. The results of the transect compared favourably to Civil Defence rapid assessments made over the following month. Now, more than one year and two major aftershocks after the February 2011 earthquake these initial estimates are compared to the current demolition status to provide an updated understanding of the state of central Christchurch.

Research papers, The University of Auckland Library

On 14 November 2016 a magnitude Mw 7.8 earthquake struck the upper South Island of New Zealand with effects also being observed in the capital city, Wellington. The affected area has low population density but is the largest wine production region in New Zealand and also hosts the main national highway and railway routes connecting the country’s three largest cities of Auckland, Wellington and Christchurch, with Marlborough Port in Picton providing connection between the South and North Islands. These transport facilities sustained substantial earthquake related damage, causing major disruptions. Thousands of landslides and multiple new faults were counted in the area. The winery facilities and a large number of commercial buildings and building components (including brick masonry veneers, historic masonry construction, and chimneys), sustained damage due to the strong vertical and horizontal acceleration. Presented herein are field observations undertaken the day immediately after the earthquake, with the aim to document earthquake damage and assess access to the affected area.

Images, eqnz.chch.2010

Nice to see the Cabbage Tree is still standing! View On Black Demolition continues on the old Beckenham shops after the 7.1 magnitude earthquake in Christchurch on the 4th September 2010. This view is looking from the car park out at th...

Research papers, University of Canterbury Library

This paper examines the consistency of seismicity and ground motion models, used for seismic hazard analysis in New Zealand, with the observations in the Canterbury earthquakes. An overview is first given of seismicity and ground motion modelling as inputs of probabilistic seismic hazard analysis, whose results form the basis for elastic response spectra in NZS1170.5:2004. The magnitude of earthquakes in the Canterbury earthquake sequence are adequately allowed for in the current NZ seismicity model, however the consideration of ‘background’ earthquakes as point sources at a minimum depth of 10km results in up to a 60% underestimation of the ground motions that such events produce. The ground motion model used in conventional NZ seismic hazard analysis is shown to provide biased predictions of response spectra (over-prediction near T=0.2s , and under-predictions at moderate-to-large vibration periods). Improved ground motion prediction can be achieved using more recent NZ-specific models.

Images, Alexander Turnbull Library

The cartoon shows New Zealand's flag but it has lost one of its four stars. Down in the lower right corner a group of rescue workers using cranes, a cherry picker and a long ladder have pulled the fourth star out of the rubble and are replacing it on the flag. Context - on 22 February 2011 a 6.3 magnitude earthquake struck in Christchurch which killed 185 people and caused very severe damage. Colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).

Images, Alexander Turnbull Library

Several volunteers work amongst the ruins of a building. A woman nearby weeps and the man comforting her comments 'and to think we believed sports stars were our national heroes'. Context - on 22 February 2011 a 6.3 magnitude earthquake struck in Christchurch which has probably killed more than 200 people (at this point the number is still not known) and caused very severe damage. There has been enormous praise for the efforts of many ordinary people who have shown courage in the catastrophe. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A shaken All Blacks supporter stands under the title 'Shamrocked!!. Around him is a news report of a recent 3 point magnitude earthquake in Christchurch, and surrounding him are the familiar earthquake terms 'Very Shakey', 'faultines' 'shocks' and 'cracks appearing'. On 16 June 2012, the Irish rugby team ('The Shamrocks' ) almost beat the All Blacks in Christchurch. The All Black team performance was poor, especially after their first win a week before. Co-incidentally, another earthquake had hit Christchurch. New Zealand fans were shaken by both events. Quantity: 1 digital cartoon(s).

Videos, UC QuakeStudies

A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.