Search

found 1055 results

Images, UC QuakeStudies

A photograph of emergency management personnel walking in a line down Lichfield Street towards the intersection of Madras Street . The members in white hazmat suits are holding their hands over their heads while members of the New Zealand Army take the lead and follow from behind. Rubble from several earthquake-damaged buildings has scattered across the street to the right. Plastic fencing has been placed along the left side of the road as a cordon. In the background there are several earthquake-damaged buildings along Lichfield Street.

Images, UC QuakeStudies

A photograph of a member of the Wellington Emergency Management Office Emergency Response Team inside an earthquake-damaged house. The wall to the left has collapsed and has been covered with plastic sheeting. Bricks and other rubble cover the floor of the room. A chest of drawers with clothing still inside has toppled to the left and is resting on the rubble.

Images, UC QuakeStudies

A photograph looking south down Manchester towards the intersection of Lichfield Street. In the distance members of the Wellington Emergency Management Office Emergency Response Team are standing next to a police car on Lichfield Street. Behind this there is a group of earthquake-damaged buildings which have spilled rubble onto Manchester Street. An excavator is parked on top of this rubble.

Research papers, Lincoln University

Artificial Neural Networks (ANN) as a tool offers opportunities for modeling the inherent complexity and uncertainty associated with socio-environmental systems. This study draws on New Zealand ski fields (multiple locations) as socio- environmental systems while considering their perceived resilience to low probability but potential high consequences catastrophic natural events (specifically earthquakes). We gathered data at several ski fields using a mixed methodology including: geomorphic assessment, qualitative interviews, and an adaptation of Ozesmi and Ozesmi’s (2003) multi-step fuzzy cognitive mapping (FCM) approach. The data gathered from FCM are qualitatively condensed, and aggregated to three different participant social groups. The social groups include ski fields users, ski industry workers, and ski field managers. Both quantitative and qualitative indices are used to analyze social cognitive maps to identify critical nodes for ANN simulations. The simulations experiment with auto-associative neural networks for developing adaptive preparation, response and recovery strategies. Moreover, simulations attempt to identify key priorities for preparation, response, and recovery for improving resilience to earthquakes in these complex and dynamic environments. The novel mixed methodology is presented as a means of linking physical and social sciences in high complexity, high uncertainty socio-environmental systems. Simulation results indicate that participants perceived that increases in Social Preparation Action, Social Preparation Resources, Social Response Action and Social Response Resources have a positive benefit in improving the resilience to earthquakes of ski fields’ stakeholders.

Audio, Radio New Zealand

Dr. Mark Quiqley is Senior Lecturer in Active Tectonics and Geomorphology in the Department of Geological Sciences at the University of Canterbury. He is part of the team involved in the scientific response to the Canterbury earthquake and has been monitoring it from the air.

Audio, Radio New Zealand

Sam Johnson founded the Student Volunteer Army from a Facebook page in response to the Christchurch earthquakes. Sam spoke with Karyn on air ten years ago today, and he shares his memories including how the Student Volunteer Army has grown into a nationwide movement.

Research papers, Lincoln University

4th September 2010 a 7.1 magnitude earthquake strikes near Christchurch, New Zealand’s second largest city of approximately 370,000 people. This is followed by a 6.3 magnitude quake on 22nd February 2011 and a 6.4 on 13th June. In February 181 people died and a state of national emergency was declared from 23 February to 30th April. Urban Search and Rescue teams with 150 personnel from New Zealand and 429 from overseas worked tirelessly in addition to Army, Police and Fire services. Within the central business district 1,000 buildings (of 4,000) are expected to be demolished. An estimated 10,000 houses require demolition and over 100,000 were damaged. Meanwhile the over 7,000 aftershocks have become part of the “new normal” for us all. During this time how have libraries supported their staff? What changes have been made to services? What are the resourcing opportunities? This presentation will provide a personal view from Lincoln University, Te Whare Wanaka o Aoraki, Library Teaching and Learning. Lincoln is New Zealand's third oldest university having been founded in 1878. Publicly owned and operated it is New Zealand's specialist land-based university. Lincoln is based on the Canterbury Plains, 22 kilometres south of Christchurch. On campus there was mostly minor damage to buildings while in the Library 200,000 volumes were thrown from the shelves. I will focus on the experiences of the Disaster Team and on our experiences with hosting temporarily displaced staff and students from the Christchurch Polytechnic Institute of Technology, Library, Learning & Information Services. Experiences from two other institutions will be highlighted: Christchurch City Libraries, Ngā Kete Wānanga-o-Ōtautahi. Focusing on the Māori Services Team and the Ngā Pounamu Māori and Ngāi Tahu collections. The Central library located within the red zone cordon has been closed since February, the Central library held the Ngā Pounamu Māori and Ngai Tahu collections, the largest Māori collections in the Christchurch public library network. The lack of access to these collections changed the way the Māori Services Team, part of the larger Programmes, Events and Learning Team at Christchurch City Libraries were able to provide services to their community resulting in new innovative outreach programmes and a focus on promotion of online resources. On 19th December the “temporary” new and smaller Central library Peterborough opened. The retrieved Ngā Pounamu Māori and Ngai Tahu collections "Ngā rakau teitei e iwa”, have since been re-housed and are once again available for use by the public. Te Rūnanga o Ngāi Tahu. This organisation, established by the Te Rūnanga o Ngāi Tahu Act 1996, services the statutory rights for the people of Ngāi Tahu descent and ensures that the benefits of their Treaty Claim Settlement are enjoyed by Ngāi Tahu now and in the future. Ngāi Tahu are the indigenous Māori people of the southern islands of New Zealand - Te Waipounamu. The iwi (people) hold the rangatiratanga or tribal authority to over 80 per cent of the South Island. With their headquarters based in the central business they have also had to be relocated to temporary facilities. This included their library/archive collection of print resources, art works and taonga (cultural treasures).

Images, UC QuakeStudies

Mitchell Brown from the USAR National Management Team farewelling the Taiwanese Search and Rescue Team at the Christchurch International Airport. The team is heading home after helping with the emergency response to the Canterbury Earthquake.

Images, UC QuakeStudies

Rob Saunders from the New Zealand Fire Department farewelling the Taiwanese Search and Rescue Team at the Christchurch International Airport. The team is heading home after helping with the emergency response to the Canterbury Earthquake.

Images, UC QuakeStudies

Mitchell Brown from the USAR National Management Team farewelling the Taiwanese Search and Rescue Team at the Christchurch International Airport. The team is heading home after helping with the emergency response to the Canterbury Earthquake.

Research papers, The University of Auckland Library

The role of belonging in post-disaster environments remains an under-theorised concept, particularly regarding refugee populations. This paper presents a qualitative study with 101 refugee-background participants from varying communities living in Christchurch, New Zealand, about their perspectives and responses to the Canterbury earthquakes of 2010–11. Participants spoke of how a sense of belonging as individuals and as a wider community was important in the recovery effort, and highlighted the multiple ways in which they understood this concept. Their comments demonstrate how belonging can have contextual, chronological and gendered dimensions that can help inform effective and resonant disaster responses with culturally and linguistically diverse populations. This analysis also illustrates how the participants' perspectives of belonging shifted over time, and discusses the corresponding role of social work in supporting post-disaster recovery through the concepts of civic, ethno and ethnic-based belonging. AM - Accepted Manuscript

Research papers, University of Canterbury Library

This paper presents a methodology by which both site-specific and spatially distributed ground motion intensity can be obtained immediately following an earthquake event. The methodology makes use of both prediction models for ground motion intensity and its correlation over spatial distances. A key benefit of the methodology is that the ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and also standard deviation, with the standard deviation being a function of the distance to nearby strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence. It is illustrated how these conditional maps can be used for post-event evaluation of liquefaction triggering criteria which have been adopted by the Department of Building and Housing (DBH). Secondly, the conditional distribution of response spectral ordinates is obtained at a specific location for the purposes of determining appropriate ground motion records for use in seismic response analyses of important structures at locations where direct recordings are absent.

Articles, UC QuakeStudies

A PDF document which discusses the ˜lessons learned by the Christchurch Migrant Inter-Agency group after the 22 February 2011 earthquake. The group was set up to support migrants and refugees following the February 22 earthquake in 2011, and has now been dis-established. However, the Christchurch Migrant Centre continues to co-ordinate services and help migrants settle into life in Christchurch. The purpose of the report is to provide a record of key events and responses of the group in the immediate aftermath of the February 22 earthquake, and to offer some candid discussion and insight with respect to their success or otherwise.

Videos, UC QuakeStudies

A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.

Audio, Radio New Zealand

National MP Gerry Brownlee says it's a great tragedy that the former chairman of government insurer Southern Response has been treated the way that he has. Ross Butler resigned on Tuesday night after a State Services Commission inquiry found Southern Response had broken its code of conduct and possibly the law, when it used private investigators to secretly record meetings of earthquake victims. The Minister for Christchurch Regeneration Megan Woods says Mr Butler was aware of what was going on, as was Mr Brownlee when he was a Minister.

Images, UC QuakeStudies

A photograph of members of the Wellington Emergency Management Office Emergency Response Team standing in front of an earthquake-damaged building on Lichfield Street. A section of the roof and the façade on the top storey of the building have collapsed and the bricks and other rubble have spilled onto the footpath and street below. USAR codes have been spray-painted on one of the bottom-storey windows and the front door.

Images, UC QuakeStudies

A photograph of the Wellington Emergency Management Office Emergency Response Team posing for a photograph on Lichfield Street. In the background is the earthquake-damaged John Burns & Co. Ltd Building. The top storey of the side wall of the building has collapsed and the rubble has spilled into the car park below. Several cars which were crushed by the falling rubble have been stacked next to the building.

Videos, UC QuakeStudies

A video of a presentation by Dr Lesley Campbell during the Community and Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Canterbury Family Violence Collaboration: An innovative response to family violence following the Canterbury earthquakes - successes, challenges, and achievements".The abstract for this presentation reads as follows: Across a range of international jurisdictions there is growing evidence that shows a high prevalence of family violence, child abuse and sexual violence over a number of years following natural disasters (World Health Organisation, 2005). Such empirical findings were also reflected within the Canterbury region following the earthquake events in 2010 and 2011. For example, in the weekend following the September 2010 earthquake, Canterbury police reported a 53% increase in call-outs to family violence incidents. In 2012, Canterbury police investigated over 7,400 incidents involving family violence - approximately 19 incidents each day. Child, youth and family data also reflect an increase in family violence, with substantiated cases of abuse increasing markedly from 1,130 cases in 2009 to 1,650 cases in 2011. These numbers remain elevated. Challenging events like the Canterbury earthquakes highlight the importance of, and provide the catalyst for, strengthening connections with various communities of interest to explore new ways of responding to the complex issue of family violence. It was within this context that the Canterbury Family Violence Collaboration (Collaboration) emerged. Operating since 2012, the Collaboration now comprises 45 agencies from across governmental and non-governmental sectors. The Collaboration's value proposition is that it delivers system-wide responses to family violence that could not be achieved by any one agency. These responses are delivered within five strategic priority areas: housing, crisis response and intervention, prevention, youth, and staff learning and development. The purpose of this presentation is to describe the experiences of the collaborative effort and lessons learnt by the collaborative partners in the first three years after its establishment. It will explore the key successes and challenges of the collaborative effort, and outline the major results achieved - a unique contribution, in unique circumstances, to address family violence experienced by Canterbury people throughout the period of recovery and rebuild.

Research papers, University of Canterbury Library

Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.

Research papers, University of Canterbury Library

Despite their good performance in terms of their design objectives, many modern code-prescriptive buildings built in Christchurch, New Zealand had to be razed after the 2010-2011 Canterbury earthquakes because repairs were deemed too costly due to widespread sacrificial damage. Clearly a more effective design paradigm is needed to create more resilient structures. Rocking, post-tensioned connections with supplemental energy dissipation can contribute to a damage avoidance designs (DAD). However, few have achieved all three key design objectives of damage-resistant rocking, inherent recentering ability, and repeatable, damage-free energy dissipation for all cycles, which together offer a response which is independent of loading history. Results of experimental tests are presented for a near full-scale rocking beam-column sub-assemblage. A matrix of test results is presented for the system under varying levels of posttensioning, with and without supplemental dampers. Importantly, this parametric study delineates each contribution to response. Practical limitations on posttensioning are identified: a minimum to ensure static structural re-centering, and a maximum to ensure deformability without threadbar yielding. Good agreement between a mechanistic model and experimental results over all parameters and inputs indicates the model is robust and accurate for design. The overall results indicate that it is possible to create a DAD connection where the non-linear force-deformation response is loading history independent and repeatable over numerous loading cycles, without damage, creating the opportunity for the design and implementation of highly resilient structures.