Search

found 38 results

Audio, Radio New Zealand

Hon JUDITH COLLINS to the Prime Minister: Does she stand by all her Government’s statements and actions? HELEN WHITE to the Minister of Finance: What recent reports has he seen on the New Zealand economy? Hon PAUL GOLDSMITH to the Minister of Education: Does he stand by all his statements and policies on education? GINNY ANDERSEN to the Minister of Housing: What recent announcements has she made about the Government’s transitional housing programme? NICOLA WILLIS to the Minister of Housing: Has the Government kept the commitment made in the 2017 Speech from the Throne to develop a ‘Rent to Own’ scheme; if so, how many families has the scheme helped into houses since then? ANAHILA KANONGATA'A-SUISUIKI to the Minister for Social Development and Employment: What support has the Ministry of Social Development provided to people and families affected by recent COVID-19 restrictions? NICOLE McKEE to the Minister of Police: Will Government actions reduce gang crime and gang numbers this year? IBRAHIM OMER to the Lead Coordination Minister for the Government's Response to the Royal Commission's Report into the Terrorist Attack on the Christchurch Mosques: What recent engagement has there been with the Muslim and other ethnic communities on the Royal Commission of Inquiry into the terrorist attack on Christchurch masjidain? SIMEON BROWN to the Minister of Police: Does she stand by her commitment to achieve the Striving Towards 1800 New Police initiative; if so, when will she achieve this initiative? TEANAU TUIONO to the Minister for Economic and Regional Development: What advice, if any, has he received about the upcoming launch in New Zealand of a satellite that includes the “Gunsmoke-J” payload from the United States Army’s Space and Missile Defense Command? MARJA LUBECK to the Minister for Workplace Relations and Safety: What recent announcements has he made about improving the Holidays Act 2003? TIM VAN DE MOLEN to the Minister for Building and Construction: How many applications has the Residential Earthquake-Prone Building Financial Assistance Scheme had since its inception in September last year, and how much has been appropriated for the scheme?

Research papers, Victoria University of Wellington

This topic was chosen in response to the devastation caused to Cathedral Square, Christchurch, New Zealand following earthquakes in 2010 and 2011. Working amongst the demolition bought to attention questions about how to re-conceive the square within the rebuilt city. In particular, it raised questions as to how a central square could be better integrated and experienced as a contemporary addition to Christchurch city. This thesis seeks to investigate the ways in which central squares can be better integrated with the contemporary city and how New Urbanist design principles can contribute toward this union. The research principally focuses on the physical and spatial integration of the square with the contemporary city. A drawing-based analysis of select precedent case studies helped to determine early on that overall integration of the contemporary square could be attributed to several interdependent criteria. The detailed studies are supplemented further with literature-based research that narrowed the criteria to five integrative properties. These are: identity, scale and proportion, use, connectivity and natural landscape. These were synthesised, in part, from the integrative New Urbanist movement and the emerging integrative side of the more contemporary Post Urbanist movement. The literature-based research revealed that a more inclusive approach toward New Urbanist and Post Urbanist design methodologies may also produce a more integrated and contemporary square. Three design case studies, using the redesign of Cathedral Square, were undertaken to test this hypothesis. The case studies found that overall, integration was reliant on a harmonious balance between the five integrative properties, concluding that squares can be better integrated with the contemporary city. Further testing of the third concept, which embraced an allied New Urbanist / Post Urbanist approach to design, found that New Urbanism was limited in its contribution toward the integration of the square.

Research papers, Victoria University of Wellington

A Line of Best Fit explores weakness and disconnection in the city. Weakness: There are over 600 earthquake prone buildings in Wellington. The urgency to strengthen buildings risks compromising the aesthetic integrity of the city through abrasive strengthening techniques, or losing a large portion of our built environment to demolition. The need for extensive earthquake strengthening in Wellington, Christchurch and other New Zealand cities provides an exciting opportunity for architecture. Disconnection: In Wellington pedestrian activity is focused around three main routes: Cuba Street, Lambton Quay and Courtney Place. The adjacent areas are often disconnected and lack vibrancy due to large building footprints, no-exit laneways and lack of public spaces. The Design proposes a strategy for earthquake strengthening, preserving and upgrading the built environment, and expanding and connecting the pedestrian realm. The site is two earthquake prone buildings on the block between Marion Street and Taranaki Street in central Wellington. A cut through the centre of the Aspro and Cathie Buildings ties the buildings together to strengthen and create a new arcade as public space. The cut aligns with existing pedestrian routes connecting the block with the city. The Design is divided into three components: Void, Curve, and Pattern and Structure. Void investigates the implications of cutting a portion out the existing buildings and the opportunities this provides for connection, urban interaction, and light. Curve discusses the unusual form of The Design in terms of scale, the human response and the surrounding spaces. Pattern and Structure considers the structural requirements of the project and how a void enveloped in perforated screens can strengthen the earthquake prone buildings. The importance of connection, providing strength in the city, a dialogue between old and new, and engagement with the unexpected are evaluated. Opportunities for further development and research are discussed, with particular reference to how the principles of The Design could be implemented on a larger scale throughout our cities. A Line of Best Fit is an architectural proposal that creates strength and connection.

Research papers, Victoria University of Wellington

The whare whakairo or traditional Māori meeting house plays an important part in Māori society and identity. These whare tell the tale of their origin, and in so doing, the origins of their people. The analysis of the meeting house, the histories expressed in its decorative carvings and structural elements are inextricably linked with and dependent upon the structure of the world created by myth and the Māori worldview. However, due to the deleterious effects of colonisation, the art of wood carving and associated architectural practices - central to Māori identity, suffered decline in many parts of the country, leading to the decline of Māori culture and identity. Sir Apirana Ngata instigated the National Institute of Māori Arts and Crafts to resurrect the dying art of Māori carving and carved houses would be a catalyst for the restoration of Māori culture throughout the country. Ngata saw these whare whakairo as being the heart of Māori communities by establishing a renewed sense of belonging and identification with space for Māori, through the telling of tribal histories and emphasising key geographical features. New threats in the form of global hegemony and urbanisation have further impacted on Māori notions of identity, creating a generation of displaced urban Māori youth. This research proposes to establish an architectural response to capture displaced Māori youth through the resurrection of the Māori carving school and return to them the lost stories of their cultural history and identity. This program will be developed within the complex challenges that exist within post-earthquake Ōtautahi/Christchurch, where many have lost homes and livelihoods, especially Māori youth in the Eastern Suburbs. The building elements of the proposed Māori carving school give reference to the historio-cultural features of the original Ōtautahi/Christchurch landscape that are situated in tribal song and myth. It is envisioned that the development of a Māori carving school will help restore Māori identity and a renewed sense of belonging, and allow for the telling of this generations stories through traditional narratives.

Research papers, University of Canterbury Library

To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.

Research papers, University of Canterbury Library

Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.

Research papers, Victoria University of Wellington

Diverse Density proposes an alternative housing strategy to the idealistic top-down process of housing development.  The term ‘Top – down’ refers to a situation in which decisions are made by a few people in authority rather than by the people who are affected by the decisions (Cambridge).  Problems/Position/Question: New Zealand’s urban housing is in a period of flux. Pressures of densification have permitted the intervention of medium density housing development schemes but these are not always successful. These typically top-down processes often result in internally focused design schemes that do not adhere to their specific context. The subsequent design outcomes can cause detrimental impacts to the local, urban and architectural conditions.  With vast quantities of council regulations, building restrictions and design guidelines clouding over the housing sector, commonly referred to as ‘red tape’, occupant participation in the housing development sector is dwindling. A boundless separation between top-down and traditional housing processes has occurred and our existing neighbourhoods and historic architectural character are taking on the brunt of the problem. The thought-provoking, alternative housings strategies of key research theorists Alejandro Aravena and John Habraken frame positions that challenge contemporary densification methods with an alternative strategy.  This position is addressed by endeavoring to answer; How can demands for denser housing achieve dynamic design responses that adhere to changes in occupancy, function and local site conditions?  Aim: The aim of this thesis is to challenge New Zealand’s current housing densification methods by proposing an alternative densification strategy. Explicit devotion will be attributed to opposing top-down building developments. Secondly, this thesis aims to test a speculative site-specific housing model. The implementation of a Christchurch housing scenario will situate an investigative study to test the strategy and its ability to stimulate greater diversity, site responsiveness, functional adaptability and occupancy permutation. The post-earthquake housing conditions of Christchurch provide an appropriate scenario to test and implement design-led investigations.  Objectives: The primary objectives of this design-led research investigation it to challenge the idealistic top-down method of developing density with a new method to:  - Develop contextual architectural cohesion - Encourage residential diversity - Reinvigorate architectural autonomy - Respond to, and recognise, existing site conditions - Develop a housing model that: - Adapts to occupant functionality preferences - Caters to occupancy diversity - Achieves contextual responsiveness  The proposition is addressed through a speculative design-led scenario study. A well-established Christchurch urban environment is adopted to implement and critique the envisioned alternative strategy. Development of the designs responsiveness, adaptability, and functionality produce a prototype housing model that actively adheres to its particular context.  Implication: The implications of this research would be an alternative densification strategy to perceive the advancement of punctual assessment of building compliance. With accelerated building processes, the research may have implications for addressing New Zealand’s housing crisis whilst simultaneously providing diverse, personable and responsive architectural solutions. A more dynamic, up-to-date and responsive housing development sector would be informed.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.