A photograph of volunteers who contributed to building a BMX track on an empty site on Colombo Street.
A photograph of volunteers laying bricks to create a labyrinth on the former site of St Luke's church.
A photograph of volunteers standing in the centre of a labyrinth they have created on the former site of St Luke's church.
A photograph of volunteers holding the foam blocks which will be used to create Foamapalooza.
A photograph of foam blocks and tires stacked on wooden pallets on the site of Foamapalooza.
A photograph of volunteers preparing the site for Foamapalooza. In the foreground, a sign describes the project.
A photograph of All Black Richie McCaw and Student Volunteer Army Founder Sam Johnson cutting vegetables.
A photograph of volunteers preparing the site for Foamapalooza.
A photograph of a volunteer wearing an In Our Backyard competition shirt. The shirt lists supporters and sponsors of the competition.
A small house is shown on an enormous foundation block labelled 'Rate$'. The cartoonist's comment is 'Like for like for the house...Total dislike for the foundation!' In Christchurch there were prospects of large rises in householders' rate to help finance the Christchurch Rebuild project. In view of the damage to housing, rate increases may be badly disproportionate. Quantity: 1 digital cartoon(s).
Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.
Page 2 of Section C of the Christchurch Press, published on Saturday 2 February 2013.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.
Looking through the fence of a construction site where some ground foundation has been laid down. The heading on the sign on the fence says 'Caution. Construction Site. Authorised Personnel Only'.
A multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing an eco-friendly seismic isolation foundation system which will improve the seismic performance of medium-density low-rise buildings. Such system is characterized by two main elements: 1) granulated scrap rubber mixed with gravelly soils to be placed beneath the structure, with the goal damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre reinforced rubberised concrete (SFRRuC) to enhance the flexibility and toughness of the foundation, looking at better accommodating the displacement demand. In this paper, the main objectives, scope and methodology of the project will be briefly described. A literature review of the engineering properties of steel-fibre reinforced rubberised concrete (RuC) will be presented. Then, preliminary results on concrete mixes with different rubber and steel fibres content will be exhibited.
Misko Cubrinovski, Civil Engineer, photographed with liquefaction and lateral spreading on Oxford Terrace. Misko's area is geotechnical earthquake engineering and foundation engineering, and he will feature in a UC in the News pull out supplement inThe Press.
Page 3 of Section A of the Christchurch Press, published on Thursday 28 August 2014.
A PDF copy of pages 216-217 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Foamapalooza'. Photos: Peter Walker, Three Chairs Photography. With permission from Volunteer Army Foundation.
A large crack where the foundation of a building has moved away from the adjoining carpark. The photographer comments, "The gap between Robbies restaurant and bar in New Brighton and the car park after the Christchurch Earthquake".
A PDF copy of pages 212-213 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project '500 Days: Churchill Park'. Photos: Peter Walker, Three Chairs Photography. With permission from Volunteer Army Foundation.
A PDF copy of pages 232-233 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'SVA - The Clean Up'. Photos: Peter Walker, Three Chairs Photography. With permission from Volunteer Army Foundation.
Page 1 of Section A of the Christchurch Press, published on Tuesday 26 August 2014.
A PDF copy of pages 362-363 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'All Right?'. Photos: All Right?
A PDF copy of pages 214-215 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Christchurch: A Board Game'. Photo (top): Peter Walker, Three Chairs Photography. With permission from Volunteer Army Foundation. Photo (bottom): Irene Boles.
The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.
A broken concrete floor slab in a residential property. The photographer comments, "Now that our house is to be rebuilt some time in the distant future, I decided to relay the loose and broken tiles. I took some photos to show what lies beneath".
Recent earthquakes in New Zealand proved that a shift is necessary in the current design practice of structures to achieve better seismic performance. Following such events, the number of new buildings using innovative technical solutions (e.g. base isolation, controlled rocking systems, damping devices, etc.), has increased, especially in Christchurch. However, the application of these innovative technologies is often restricted to medium-high rise buildings due to the maximum benefit to cost ratio. In this context, to address this issue, a multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing a foundation system which will improve the seismic performance of medium-density low-rise buildings. Such foundation is characterized by two main elements: 1) granulated tyre rubber mixed with gravelly soils to be placed beneath the structure, with the goal of damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre rubberised concrete to enhance the flexibility of the foundation under differential displacement demand. In the first part of this paper, the overarching objectives, scope and methodology of the project will be briefly described. Then, preliminary findings on the materials characterization, i.e., the gravel-rubber mixtures and steel-fibre rubberised concrete mixes, will be presented and discussed with focus on the mechanical behaviour.
A PDF copy of pages 228-229 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Lions Transitional Facility'. Photos: Irene Boles
A video of Stone Works removing a time capsule from the foundations of the old Press Building in Cathedral Square. The time capsule was found in the foundation stone of the building. It contained a bundle of newspapers from April 1907, handwritten notes, and coins.
A PDF copy of pages 210-211 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'St Luke's Labyrinth'. Page 210 photos: Irene Boles. Page 211 photos: Peter Walker, Three Chairs Photography. With permission from Student Volunteer Army Foundation.