Search

found 65 results

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Images, UC QuakeStudies

Jess Hollis, a member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. My desk with Jess behind".

Images, UC QuakeStudies

Jess Hollis, a member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. Jess, with my desk behind".

Images, UC QuakeStudies

A photograph submitted by Grant Fife to the QuakeStories website. The description reads, "Canterbury Provincial Chambers 03/04/2011. This building was being stabilised and repaired after the September quake.".

Images, UC QuakeStudies

Members of the University of Canterbury's E-Learning team Susan Tull and Nick Ford in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. Susan and Nick settle in".

Images, eqnz.chch.2010

The earthquake re-pair work has started on the Knox Church on Bealey Avenue, August 14, 2013 Christchurch New Zealand. While building after building is torn down in Christchurch, plans are in place to ensure as much of a 131-year-old church is retained as possible. Knox Church on Bealey Avenue suffered major damage in the February 22 earthquak...

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.

Images, UC QuakeStudies

A crane beside the boiler chimney in the University of Canterbury's Facilities Management yard. The photographer comments, "The University restarts its teaching, and the techies in e-learning move out of NZi3. Inspection and repairs to the University's boiler system. It's getting cooler, we'll need heat soon - but we need accessible buildings first".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Foyer lifts etc. Female toilets are off the foyer to the left. These lifts start at Level 2 of the Library, and are heavily used by students. (Once the building is repaired after the earthquake; several floors are still in a mess)".

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Images, UC QuakeStudies

Steel bracing on the front of the Worcester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. The scaffolding has been decorated with sculptures of people kayaking, cycling, climbing and bungee jumping. Some of the figures are wearing santa hats. A fence has been constructed at the base of the building.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Images, UC QuakeStudies

Scaffolding that has been constructed on the Manchester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. Masonry has fallen from one of the building's gables, and the resultant gap has been weather proofed with plywood and a tarpaulin. The site has been enclosed in a safety fence that cuts off one lane of the road.

Articles, UC QuakeStudies

A copy of a letter from Hugo Kristinsson which was sent to Roger Sutton on 19 September 2013. The letter was sent on behalf of Empowered Christchurch. In the letter, Kristinsson expresses his concern about changes to the Building Act which he states, 'waive liability for the Building Consent Authority when repairs are carried out on homes with land damage'. He also discusses the CERA community forums, which he feel are not fufilling their purpose of supporting and informing the Canterbury community. Lastly, Kristinsson lodges an Official Information Act request, asking for all forum notices and minutes to be released to the public and for access to land information to be provided.

Images, UC QuakeStudies

Scaffolding that has been constructed on the Manchester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. Masonry has fallen from one of the building's gables, and the resultant gap has been weather proofed with plywood and a tarpaulin. The site has been enclosed in a safety fence that cuts off one lane of the road.

Images, UC QuakeStudies

Scaffolding that has been constructed on the Manchester Street face of the Octagon Live Restaurant (formerly Trinity Church), which is being repaired. Masonry has fallen from one of the building's gables, and the resultant gap has been weather proofed with plywood and a tarpaulin. The site has been enclosed in a safety fence that cuts off one lane of the road.