Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
Canterbury Earthquake 04/09/10 Christchurch New Zealand
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Secretary Clinton Remembers February 22nd".
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "American Friends of Christchurch".
Canterbury Earthquake 04/09/10 Christchurch New Zealand
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Michele Petersen Remembers February 22nd".
PDF slides from a presentation given by Dr. Thomas Wilson from the UC Geology department on 18 November 2010 in Wellington. The presentation was delivered at a State Services Briefing at the Reserve Bank Seminar Room, and at a public talk for UC Alumni at the Wellington Club.
A photograph captioned by BeckerFraserPhotos, "As we went by, we recorded the current state of the site of the urgent demolition in Redcliffs from last week. To our surprise when processing the photo, we noticed how damaged the surrounding houses are, particularly the house with the red tiles".
A press release from the United States of America Embassy New Zealand, about their response to the 22 February 2011 earthquake in Christchurch.
A PDF copy of signs used along the 2014 Summer Starter course. Each sign includes information about one of the major charities involved, as well as the logos of major and supporting partners.
The Canterbury earthquakes destroyed the Christchurch CBD and caused massive disruption to business across the region. There was an urgent need to support business survival and foster economic recovery. Recover Canterbury is a hub providing seamless support for businesses affected by the earthquakes, giving them easy access to government and commercial expertise in a one-stop shop.
A video of a presentation by Dr Penelope Burns during the second plenary of the 2016 People in Disasters Conference. Burns is the Senior Lecturer in the Department of General Practice at the University of Western Sydney. The presentation is titled, "Recovery Begins in Preparedness".The abstract for this presentation reads as follows: Involvement of primary care doctors in planning is essential for optimising the health outcomes of communities during and after disasters. However, our experience in Australia has shown that primary care doctors have not been included in a substantial way. This presentation will highlight our experience in the Victorian and New South Wales bushfires and the Sydney Siege. It will stress the crucial need to involve primary care doctors in planning at national, state, and local levels, and how we are working to implement this.
Two days after the 22 February 2011 M6.3 earthquake in Christchurch, New Zealand, three of the authors conducted a transect of the central city, with the goal of deriving an estimate of building damage levels. Although smaller in magnitude than the M7.1 4 September 2010 Darfield earthquake, the ground accelerations, ground deformation and damage levels in Christchurch central city were more severe in February 2011, and the central city was closed down to the general public. Written and photographic notes of 295 buildings were taken, including construction type, damage level, and whether the building would likely need to be demolished. The results of the transect compared favourably to Civil Defence rapid assessments made over the following month. Now, more than one year and two major aftershocks after the February 2011 earthquake these initial estimates are compared to the current demolition status to provide an updated understanding of the state of central Christchurch.
A video of the keynote-presentation by Dr Jeanne LeBlanc, Registered Psychologist, during the second plenary of the 2016 People in Disasters Conference. LeBlanc is a Registered Psychologist, specialising in Clinical Neuropsychology and Rehabilitation. She is the British Columbia Psychological Association (BCPA) Representative for the American Psychological Associate State, Territorial and Provincial Disaster Response Network, and has also been appointed as the Behavioural Health Liaison to the American Board of Disaster Medicine. The presentation is titled, "Machetes and Breadfruit: Medical disaster response challenges in unstable settings".The abstract for this presentation reads as follows: The January 2010 earthquake in Haiti resulted in a massive response to a setting which was already fraught with danger, causing a number of personal, logistical, and safety challenges to responding medical teams. This presentation will provide a first-person account of this experience from the perspective of a behavioural health professional, whose responsibility was both the overall emotional wellbeing of the medical responders, as well as those impacted by the quake. Unique 'lessons learned' by these response teams will be highlighted, and recommendations will be provided for responders considering deploying to future events in highly unstable areas.
The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/
Buildings subject to earthquake shaking will tend to move not only horizontally but also rotate in plan. In-plan rotation is known as “building torsion” and it may occur for a variety of reasons, including stiffness and strength eccentricity and/or torsional effects from ground motions. Methods to consider torsion in structural design standards generally involve analysis of the structure in its elastic state. This is despite the fact that the structural elements can yield, thereby significantly altering the building response and the structural element demands. If demands become too large, the structure may collapse. While a number of studies have been conducted into the behavior of structures considering inelastic building torsion, there appears to be no consensus that one method is better than another and as a result, provisions within current design standards have not adopted recent proposals in the literature. However, the Canterbury Earthquakes Royal Commission recently made the recommendation that provisions to account for inelastic torsional response of buildings be introduced within New Zealand building standards. Consequently, this study examines how and to what extent the torsional response due to system eccentricity may affect the seismic performance of a building and considers what a simple design method should account for. It is concluded that new methods should be simple, be applicable to both the elastic and inelastic range of response, consider bidirectional excitation and include guidance for multi-story systems.