A photograph of the clock from the Canterbury Provincial Chambers on display in the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of a sign in the Canterbury Quakes exhibition at the Canterbury Museum. The sign displays the first Christchurch earthquake tweet on twitter, "Quake!!!!!!".
A photograph of an exhibition sign next to the ChristChurch Cathedral cross. The cross was on display in the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of an exhibition sign next to the ChristChurch Cathedral bell. The bell was on display in the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of an exhibition sign about a skateboard video filmed on Christchurch's damaged streets. The video was part of the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of 'The Snapa Crapa', a bike with a toilet for a seat. The bike was on display in the Canterbury Quakes exhibition at the Canterbury Museum.
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch, where the clean-up has begun. Historic buildings around Christchurch received varying degrees of damage. Canterbury Museum seems unscathed".
A photograph of an exhibition sign next to 'The Snapa Crapa', a bike with a toilet for a seat. 'The Snapa Crapa' was on display in the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of an exhibition sign next to 'The Snapa Crapa', a bike with a toilet for a seat. 'The Snapa Crapa' was on display in the Canterbury Quakes exhibition at the Canterbury Museum.
A photograph of the John Robert Godley statue on display in the Canterbury Quakes exhibition at the Canterbury Museum. The statue fell off its plinth in Cathedral Square during the 22 February 2011 earthquake, exposing two time capsules.
A photograph of an exhibition sign next to the Speaker's Chair on display in the Canterbury Quakes exhibition at the Canterbury Museum. The Speaker's Chair stood at the southern end of the Stone Chamber of the Canterbury Provincial Chambers, and survived the 22 February 2011 earthquake despite the damage to the chamber.
A photograph of the Speaker's Chair on display in the Canterbury Quakes exhibition at the Canterbury Museum. The Speaker's Chair stood at the southern end of the Stone Chamber of the Canterbury Provincial Chambers, and survived the 22 February 2011 earthquake despite the damage to the chamber.
A photograph of an exhibition sign next to the 'Quilt for Christchurch', in the Canterbury Quakes exhibition at the Canterbury Museum. The quilt was created by members of the public who sent squares to The Breeze radio station in Auckland.
A photograph of equipment from the New Zealand Fire Service Urban Search and Rescue team on display in the Canterbury Quakes exhibition at the Canterbury Museum. The equipment was used during the emergency response to the 22 February 2011 earthquake.
A notice on the cordon fence around the site where the CTV building once was. It says 'Please respect this site. In recognition of the special significance this site holds for the people of our city and all those affect by the earthquakes, the Christchurch City Council is working with Canterbury Museum to preserve aspects of our remembering. Tributes may be left at this site. Older tributes will be removed from archiving by the Canterbury Museum to become part of the city's memory of the Canterbury Earthquakes. Organic materials will be composted and used in the city's gardens'.
A photograph of a quilt on display in the Canterbury Quakes exhibition at the Canterbury Museum. The quilt was created by members of the public who sent squares to The Breeze radio station in Auckland to be part of the 'Quilt for Christchurch'.
A photograph of a letter on display in the Canterbury Quakes exhibition at the Canterbury Museum. The letter was found in a time capsule in the plinth of the statue of John Robert Godley in Cathedral Square after the 22 February 2011 earthquake.
A photograph of a letter on display in the Canterbury Quakes exhibition at the Canterbury Museum. The letter was found in a time capsule in the plinth of the statue of John Robert Godley in Cathedral Square after the 22 February 2011 earthquake.
A photograph of The Press newspapers on display in the Canterbury Quakes exhibition at the Canterbury Museum. The newspapers where discovered inside a time capsule found in the plinth of the statue of John Robert Godley in Cathedral Square after the 22 February 2011 earthquake.
A photograph of The Press newspapers on display in the Canterbury Quakes exhibition at the Canterbury Museum. The newspapers where discovered inside a time capsule found in the plinth of the statue of John Robert Godley in Cathedral Square after the 22 February 2011 earthquake.
A photograph of an exhibition sign next to two time capsules on display in the Canterbury Quakes exhibition at the Canterbury Museum. The time capsules were discovered in the plinth of the statue of John Robert Godley in Cathedral Square after the 22 February 2011 earthquake.
A digitally manipulated photograph of the Ozone Hotel's sign, leaning against a cordon fence. The photographer comments, "This sign was all that remained after the demolition of the historical Ozone Hotel, which was damaged in the Christchurch earthquakes. The sign disappeared so hopefully it will reappear at a later date in a museum. The bits of blue were the painted bricks of the hotel, which made it really stand out".
A PDF copy of pages 336-337 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Green Frame Exhibition'.
This article examines the representation of Christchurch, New Zealand, student radio station RDU in the exhibition Alternative Radio at the Canterbury Museum in 2016. With the intention of ‘making visible what is invisible’ about radio broadcasting, the exhibition articulated RDU as a point of interconnection between the technical elements of broadcasting, the social and musical culture of station staff and volunteers, and the broader local and national music scenes. This paper is grounded in observations of the exhibitions and associated public programmes, and interviews with the key participants in the exhibition including the museum's exhibition designer and staff from RDU, who acted as independent practitioners in collaboration with the museum. Alternative Radio also addressed the aftermath of the major earthquake of 22 February 2011, when RDU moved into a customised horse truck after losing its broadcast studio. The exhibition came about because of the cultural resonance of the post-quake story, but also emphasised the long history of the station before that event, and located this small student radio station in the broader heritage discourse of the Canterbury museum, activating the historical, cultural, and personal memories of the station's participants and audiences.
This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.
When a tragedy occurs of local or national scale throughout the world a memorial is often built to remember the victims, and to keep the tragedy fresh in the minds of generations with the conviction that this must not be repeated. Memorials to commemorate natural disasters very to the objective of a human induced tragedy in that future catastrophic events that affect the lives and livelihood of many citizens are sure to reoccur in countries that are geographically pre-disposed to the ravages of nature. This thesis examines memorial sites as case studies in New Zealand and Japan to explore the differences in how these two countries memorialise earthquakes, and tsunamis in the case of Japan, and whether there are lessons that each could learn from each other. In so doing, it draws largely on scholarly literature written about memorials commemorating war as little is written on memorials that respond to natural disasters. Visited case sites in both countries are analysed through multiple qualitative research methods with a broad view of what constitutes a memorial when the landscape is changed by the devastation of a natural disaster. How communities prepare for future events through changes in planning legislation, large scale infrastructure, tourism and preparedness for personal safety are issues addressed from the perspective of landscape architecture through spatial commemorative places. The intentions and meanings of memorials may differ but in the case of a memorial of natural disaster there is a clear message that is common to all. To reduce the severity of the number of deaths and level of destruction, education and preparedness for future events is a key aim of memorials and museums.
Heritage buildings are an important element of our urban environments, representing the hope and aspirations of a generation gone, reminding us of our achievements and our identity. When heritage buildings suffer damage, or fall into disrepair they are either met by one of two extremes; a bulldozer or painstaking repair. If the decision to conserve defeats the bulldozer, current heritage practice favours restoration into a mausoleum-type monument to yesteryear. But what if, rather than becoming a museum, these heritage buildings could live on and become a palimpsest of history? What if the damage was embraced and embodied in the repair? The Cathedral of the Blessed Sacrament on Barbadoes Street, Christchurch is the case study building for this thesis. Suffering damage in the Canterbury earthquakes of 2010 and 2011, the Cathedral sits in ruin waiting for decisions to be made around how it can be retained for future generations. This thesis will propose a reconstruction for the Cathedral through the analysis of precedent examples of reconstructing damaged heritage buildings and guided by a heritage framework proposed in this thesis. The employed process will be documented as an alternative method for reconstructing other damaged heritage buildings.
In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.