Search

found 4838 results

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Images, UC QuakeStudies

Two images of a house, taken before and after the earthquakes. In the after photograph the chimneys are gone, a column supporting the car port has partly collapsed, windows are broken, and the previously neat lawn and driveway are overgrown. The photographer comments, "This was a house that I was selling up to the September 2010 earthquake in Christchurch. It was on Avonside Drive, which was an area that has been badly hit in every earthquake that has hit the area. In the September quake parts of the house moved in different directions and one of the upstairs doors had to be smashed open to release one of the sons from his bedroom. This occurred in the dark with numerous aftershocks shaking the house. Liquefaction poured up through the floor and flowed down the drive. Everyone got out OK, but soon after the house was red stickered meaning it was dangerous to enter. The house was looted many times even though there was constant police patrols. When the most violent earthquake occurred on 22 February 2012 both the tall heavy chimneys came crashing through into the living areas. Subsequent earthquakes and aftershocks have caused one of the brick fence pillars to fall and the front garage pillar to break up and twist. The family's troubles did not end there. They moved into the home of one of their parents and this mansion of a home was so badly affected by the February earthquake that no one could enter to collect any of their or their parents' belongings. They now own a new home, which they are fond of except when the ground shakes yet again. There has been to date 10,712 earthquakes and aftershocks since 4 September 2010".

Images, UC QuakeStudies

Liquefaction and flooding in Waitaki Street, Bexley. The photographer comments, "Waitaki Street a week after the Christchurch Earthquake. Because of the damage to the drains and liquefaction in the area the streets are not drying out".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. A massive 7.4 magnitude earthquake has hit Christchurch and the wider South Island, causing widespread damage, two serious injuries and power cuts to most of the city. Clinton Gooch was awake when the quake hit and was running downstairs to get outside when the wall of his flat collapsed causing the windows to shatter in the shop below".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. A massive 7.4 magnitude earthquake has hit Christchurch and the wider South Island, causing widespread damage, two serious injuries and power cuts to most of the city. Marsha Witehira had the bricks from the wall of her house fall onto her bed where she was sleeping. Both sides of her house have collapsed. Witehira (L) is comforted by a friend".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. A massive 7.4 magnitude earthquake has hit Christchurch and the wider South Island, causing widespread damage, two serious injuries and power cuts to most of the city. Marsha Witehira had the bricks from the wall of her house fall onto her bed where she was sleeping. Both sides of her house have collapsed. Witehira (R) is comforted by a friend".

Research papers, University of Canterbury Library

Sewerage systems convey sewage, or wastewater, from residential or commercial buildings through complex reticulation networks to treatment plants. During seismic events both transient ground motion and permanent ground deformation can induce physical damage to sewerage system components, limiting or impeding the operability of the whole system. The malfunction of municipal sewerage systems can result in the pollution of nearby waterways through discharge of untreated sewage, pose a public health threat by preventing the use of appropriate sanitation facilities, and cause serious inconvenience for rescuers and residents. Christchurch, the second largest city in New Zealand, was seriously affected by the Canterbury Earthquake Sequence (CES) in 2010-2011. The CES imposed widespread damage to the Christchurch sewerage system (CSS), causing a significant loss of functionality and serviceability to the system. The Christchurch City Council (CCC) relied heavily on temporary sewerage services for several months following the CES. The temporary services were supported by use of chemical and portable toilets to supplement the damaged wastewater system. The rebuild delivery agency -Stronger Christchurch Infrastructure Rebuild Team (SCIRT) was created to be responsible for repair of 85 % of the damaged horizontal infrastructure (i.e., water, wastewater, stormwater systems, and roads) in Christchurch. Numerous initiatives to create platforms/tools aiming to, on the one hand, support the understanding, management and mitigation of seismic risk for infrastructure prior to disasters, and on the other hand, to support the decision-making for post-disaster reconstruction and recovery, have been promoted worldwide. Despite this, the CES in New Zealand highlighted that none of the existing platforms/tools are either accessible and/or readable or usable by emergency managers and decision makers for restoring the CSS. Furthermore, the majority of existing tools have a sole focus on the engineering perspective, while the holistic process of formulating recovery decisions is based on system-wide approach, where a variety of factors in addition to technical considerations are involved. Lastly, there is a paucity of studies focused on the tools and frameworks for supporting decision-making specifically on sewerage system restoration after earthquakes. This thesis develops a decision support framework for sewerage pipe and system restoration after earthquakes, building on the experience and learning of the organisations involved in recovering the CSS following the CES in 2010-2011. The proposed decision support framework includes three modules: 1) Physical Damage Module (PDM); 2) Functional Impact Module (FIM); 3) Pipeline Restoration Module (PRM). The PDM provides seismic fragility matrices and functions for sewer gravity and pressure pipelines for predicting earthquake-induced physical damage, categorised by pipe materials and liquefaction zones. The FIM demonstrates a set of performance indicators that are categorised in five domains: structural, hydraulic, environmental, social and economic domains. These performance indicators are used to assess loss of wastewater system service and the induced functional impacts in three different phases: emergency response, short-term recovery and long-term restoration. Based on the knowledge of the physical and functional status-quo of the sewerage systems post-earthquake captured through the PDM and FIM, the PRM estimates restoration time of sewer networks by use of restoration models developed using a Random Forest technique and graphically represented in terms of restoration curves. The development of a decision support framework for sewer recovery after earthquakes enables decision makers to assess physical damage, evaluate functional impacts relating to hydraulic, environmental, structural, economic and social contexts, and to predict restoration time of sewerage systems. Furthermore, the decision support framework can be potentially employed to underpin system maintenance and upgrade by guiding system rehabilitation and to monitor system behaviours during business-as-usual time. In conjunction with expert judgement and best practices, this framework can be moreover applied to assist asset managers in targeting the inclusion of system resilience as part of asset maintenance programmes.

Images, Alexander Turnbull Library

Two skeletal people sit in armchairs waist-deep in silt. The man is reading the newspaper and says 'The wait's over! The Land Report's due out dear!... DEAR?' He realises that his wife, whose bony hand clutches 'EQC update No. 37', is dead. Context - On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.

Images, Alexander Turnbull Library

Shows a carcass that represents the Christchurch Cathedral with many people rushing to try to save it from demolition. Context: the extremely controversial debate about whether the Christchurch Cathedral which was severely damaged in the earthquakes, should be demolished, rebuilt on the same site in the same style or partially demolished and made into a memorial. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

Broken panelling on a building on Colombo Street has exposed the interior of the walls. The photographer comments, "Seen in the Christchurch Earthquake Red Zone. If you saw this anywhere else in the world you would have thought that it was a piece of modern art".

Images, Alexander Turnbull Library

A woman walks through the snow in Christchurch and comments 'At least snow covers up ugly quake damage dear... Dear?' Her husband has disappeared into a hole that was covered in snow. Context: Heavy snow blanketed Christchurch today (Saturday 9 August) as the winter cold continued to be felt across both the North and South Islands. Snow began falling in Christchurch about 7am today and covered most of the city. (NZHerald: Aug 9 2011) Quantity: 1 digital cartoon(s).

Research Papers, Lincoln University

Six stands located on different land forms in mixed old-growth Nothofagus forests in the Matiri Valley (northwest of South Island, New Zealand) were sampled to examine the effects of two recent large earthquakes on tree establishment and tree-ring growth, and how these varied across land forms. 50 trees were cored in each stand to determine age structure and the cores were cross-dated to precisely date unusual periods of radial growth. The 1968 earthquake (M = 7.1, epicentre 35 km from the study area) had no discernible impact on the sampled stands. The impact of the 1929 earthquake (M = 7.7, epicentre 20 km from the study area) varied between stands, depending on whether or not they had been damaged by soil or rock movement. In all stands, the age structures showed a pulse of N. fusca establishment following the 1929 earthquake, with this species dominating establishment in large gaps created by landslides. Smaller gaps, created by branch or tree death, were closed by both N. fusca and N. menziesii. The long period of releases (1929-1945) indicates that direct earthquake damage was not the only cause of tree death, and that many trees died subsequently most likely of pathogen attack or a drought in the early 1930s. The impacts of the 1929 earthquake are compared to a storm in 1905 and a drought in 1974-1978 which also affected forests in the region. Our results confirm that earthquakes are an important factor driving forest dynamics in this tectonically active region, and that the diversity of earthquake impacts is a major source of heterogeneity in forest structure and regeneration.

Images, Alexander Turnbull Library

Text at top left reads 'Christchurch display portaloos' Four different styles of portaloo are shown; the "Merivale", the 'Sumner", the "Heritage" and the "Eastsider"; someone inside the 'Eastsider says 'At least I'm open plan AND mobile!' Context - After the tow Christchurch earthquakes and hundreds of aftershocks that have hit Christchurch one of the problems is lack of toilets because of damage to buildings and also damage to sewage systems so many portaloos and chemical toilets have been sent to Christchurch. However many people have resorted to the good old kiwi way and dug long-drops in the backyard. A website 'showusyourlongdrop.co.nz' has been developed by Christchurch man Jason Moore, who was inspired by photographs of Christchurch dunnies uploaded to Facebook. There has been a competition. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

A building on St Asaph Street has been demolished, exposing the interior structure of the adjoining building. The photographer comments, "The building that this one was part of has been demolished and the join looks very much like the exterior walls of an Anglo-Saxon house. It has been exposed due to the demolition of damaged buildings after the Christchurch earthquake".

Images, UC QuakeStudies

Glass panels with brass surrounds, stacked inside a building. The photographer comments, "These were brass dividers that were brought inside the building two years ago after the Christchurch earthquake. They have been sitting there abandoned in a restaurant that will be either repaired and reopened at a later date or demolished like the many others of its kind".

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript

Images, Alexander Turnbull Library

The globe is depicted as a hand grenade; the skeletal remains of a hand reach out to 'pull the pin'. Context - the fragility of the world from a New Zealand point of view seen in the light of the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the Japanese earthquake and tsunami of 22 February 2011 and the present threat of a nuclear catastrophe caused by damaged nuclear power plants. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

Beverly Forrester farms near Harden which is down the road from Hanmer Springs. Road damage means she's cut off from the outside world, apart from her phone Beverly was caught up in the Christchurch earthquake, so the events of the last 24hrs have been quite trying for her.

Images, UC QuakeStudies

USAR codes and a yellow sticker can be seen on the doors of a damaged building. The yellow sticker was part of a building assessment system used following the February earthquake and indicates that this building has limited access and needs further evaluation.