
An entry from Deb Robertson's blog for 11 June 2011 entitled, "A quilt for my sister-in-law".
An entry from Deb Robertson's blog for 10 February 2012 entitled, "Thinking about February 22....".
An entry from Deb Robertson's blog for 11 August 2011 entitled, "[[Beautiful Quilt Pictures]]".
A pdf transcript of Jeff Davies's second earthquake story, captured by the UC QuakeBox Take 2 project. The interview was conducted via Zoom. Interviewer: Joshua Black. Transcriber: Lauren Millar.
A pdf transcript of John's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
A pdf transcript of Julie's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Rosemary Du Plessis. Transcriber: Natalie Looyer.
A pdf transcript of Sarah Shaw's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Samuel Hope.
A pdf transcript of Max Lucas's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Laura Moir. Transcriber: Sarah Woodfield.
A pdf transcript of Lee-Ray Ozanne's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A story submitted by Jo Nicholls-Parker and Petra Van Asten to the QuakeStories website.
A pdf transcript of Participant number LY967's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
A pdf transcript of Tania's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Laura Moir. Transcriber: Lucy Denham.
A pdf transcript of Vic Bartley's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Sarah Woodfield.
A pdf transcript of Diane Hyde's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Paul Millar. Transcriber: Natalie Looyer.
Transcript of Jan Dobson's earthquake story, captured by the UC QuakeBox project.
A pdf transcript of Andrea's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A pdf transcript of Ann's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A story submitted by Mike Williams to the QuakeStories website.
The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.
A story submitted by Andy R to the QuakeStories website.
A story submitted by Lawrence Wootton to the QuakeStories website.
A story submitted by Melody to the QuakeStories website.
A story submitted by JAC to the QuakeStories website.
A story submitted by Helen to the QuakeStories website.
Transcript of Kirsty's earthquake story, captured by the UC QuakeBox project.
Transcript of Jeff Davies's earthquake story, captured by the UC QuakeBox project.
An entry from Deb Robertson's blog for 27 May 2013 entitled, "The Hottie Project 2013".
An entry from Deb Robertson's blog for 7 September 2010 entitled, "Earthquake Update".
We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Canterbury Earthquake Sequence (CES) 2010 -2011 as our case study. Uniquely for this event, more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more effective than insurance-managed repairs in contributing to local recovery.
The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.