Search

found 4317 results

Research papers, The University of Auckland Library

The Catholic Cathedral of the Blessed Sacrament is a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes. The building experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to securing the building, and the interaction of the structural, heritage and safety demands involved in a dynamic seismic risk environment. We briefly cover the types of failures observed and the behaviour of the structure, and investigate the performance of both strengthened and un-strengthened parts of the building. Seismic strengthening options are investigated at a conceptual level. We draw conclusions as to how the building performed in the earthquakes, comment on the effectiveness of the strengthening and securing work and discuss the potential seismic strengthening methods.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.

Research papers, University of Canterbury Library

Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.

Research papers, University of Canterbury Library

Following the recent earthquakes in Chile (2010) and New Zealand (2010/2011), peculiar failure modes were observed in Reinforced Concrete (RC) walls. These observations have raised a global concern on the contribution of bi-directional loading to these failure mechanisms. One of the failure modes that could potentially result from bidirectional excitations is out-of-plane shear failure. In this paper an overview of the recent experimental and numerical findings regarding out-of-plane shear failure in RC walls are presented. The numerical study presents the Finite Element (FE) simulation of wall D5-6 from the Grand Chancellor Hotel that failed in shear in the out-of-plane direction in the February 2011 Christchurch earthquake. The main objective of the numerical study was to investigate the reasons for this failure mode. The experimental campaign includes the recent experiments conducted in the Structural Engineering Laboratory of the University of Canterbury. The experimental study included three rectangular slender RC walls designed based on NZS3101: 2006-A3 (2017) for three different ductility levels, namely: nominally ductile, limited ductile and ductile. The numerical results showed that high axial load combined with bi-directional loading caused the out-of-plane shear failure in wall D5-6 from the Grand Chancellor Hotel. This was also confirmed and further investigated in the experimental phase of the study.

Research papers, University of Canterbury Library

This article examines the representation of Christchurch, New Zealand, student radio station RDU in the exhibition Alternative Radio at the Canterbury Museum in 2016. With the intention of ‘making visible what is invisible’ about radio broadcasting, the exhibition articulated RDU as a point of interconnection between the technical elements of broadcasting, the social and musical culture of station staff and volunteers, and the broader local and national music scenes. This paper is grounded in observations of the exhibitions and associated public programmes, and interviews with the key participants in the exhibition including the museum's exhibition designer and staff from RDU, who acted as independent practitioners in collaboration with the museum. Alternative Radio also addressed the aftermath of the major earthquake of 22 February 2011, when RDU moved into a customised horse truck after losing its broadcast studio. The exhibition came about because of the cultural resonance of the post-quake story, but also emphasised the long history of the station before that event, and located this small student radio station in the broader heritage discourse of the Canterbury museum, activating the historical, cultural, and personal memories of the station's participants and audiences.

Research papers, University of Canterbury Library

A building boom in the 1980s allowed pre-stressed hollow-core floor construction to be widely adopted in New Zealand, even though the behaviour of these prefabricated elements within buildings was still uncertain. Inspections following the Canterbury and Kaikōura earthquakes has provided evidence of web-splitting, transverse cracking and longitudinal splitting on hollow-core units, confirming the susceptibility of these floors to undesirable failure modes. Hollow-core slabs are mainly designed to resist bending and shear. However, there are many applications in which they are also subjected to torsion. In New Zealand, hollow-core units contain no transverse reinforcement in the soffit concrete below the cells and no web reinforcement. Consequently, their dependable performance in torsion is limited to actions that they can resist before torsional cracking occurs. In previous work by the present authors, a three-dimensional FE modelling approach to study the shear flexural behaviour of precast pre-stressed hollow core units was developed and validated by full-scale experiments. This paper shows how the FE analyses have been extended to investigate the response of HC units subjected to torsional actions. Constitutive models, based on nonlinear fracture mechanics, have been used to numerically predict the torsional capacity of HC units and have been compared with experimental results. The results indicate that the numerical approach is promising and should be developed further as part of future research.

Research papers, University of Canterbury Library

Light timber framed (LTF) structures provide a cost-effective and structurally efficient solution for low-rise residential buildings. This paper studies seismic performance of single-storey LTF buildings sheathed by gypsum-plasterboards (GPBs) that are a typical lining product in New Zealand houses. Compared with wood-based structural panels, GPBs tend to be more susceptible to damage when they are used in bracing walls to resist earthquake loads. This study aims to provide insights on how the bracing wall irregularity allowed by the current New Zealand standard NZS 3604 and the in-plane rigidity of ceiling diaphragms affect the overall seismic performance of these GPB-braced LTF buildings. Nonlinear time-history analyses were conducted on a series of single-storey baseline buildings with different levels of bracing wall irregularities and ceiling diaphragm rigidity. The results showed significant torsional effect caused by the eccentric bracing wall layout with semi-rigid/rigid ceiling diaphragms. On average, bracing wall drift demand caused by the extreme bracing wall irregularities was three times of that in the regular bracing wall layout under the rigid diaphragm assumption. This finding agreed well with the house survey after the 2011 Canterbury Earthquake in which significantly more damage was observed in the houses with irregular bracing wall layouts and relatively rigid diaphragms. Therefore, it is recommended to limit the level of bracing wall eccentricity and ensure the sufficiently rigid diaphragms to avoid excessive damage in these LTF buildings in future events.

Research Papers, Lincoln University

The paper examines community benefits provided by an established community garden following a major earthquake and discusses possible implications for community garden planning and design in disaster-prone cities. Recent studies show that following extreme storm events community gardens can supply food, enhance social empowerment, provide safe gathering spots, and restorative practices, to remind people of normality. However, the beneficial role played by community gardens following earthquakes is less well known. To fill this gap, the study examines the role played by a community garden in Christchurch, New Zealand, following the 2010/2011 Canterbury Earthquakes. The garden's role is evaluated based on a questionnaire-based survey and in-depth interviews with gardeners, as well as on data regarding the garden use before and after the earthquakes. Findings indicate the garden helped gardeners cope with the post-quake situation. The garden served as an important place to de-stress, share experiences, and gain community support. Garden features that reportedly supported disaster recovery include facilities that encourage social interaction and bonding such as central meeting and lunch places and communal working areas.

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance. However, poor performance was reported in terms of their seismic resilience. Although numerous innovative methods to mitigate damage have been introduced to the New Zealand community in order to improve wooden house performance, these retrofit options have not been readily taken up. The low number of retrofitted wooden-framed houses leads to questions about whether homeowners are aware of the necessity of seismic retrofitting their houses to achieve a satisfactory seismic performance. This study aims to explore different retrofit technologies that can be applied to wooden-framed houses in Wellington, taking into account the need of homeowners to understand the risk, likelihood and extent of damage expected after an event. A survey will be conducted in Wellington about perceptions of homeowners towards the expected performance of their wooden-framed houses. The survey questions were designed to gain an understanding of homeowners' levels of safety and awareness of possible damage after a seismic event. Afterwards, a structural review of a sample of the houses will be undertaken to identify common features and detail potential seismic concerns. The findings will break down barriers to making improvements in the performance of wooden-framed houses and lead to enhancements in the confidence of homeowners in the event of future seismic activity. This will result in increased understanding and contribute towards an accessible knowledge base, which will possibly increase significantly the use of these technologies and avoid unnecessary economic and social costs after a seismic event.

Research papers, University of Canterbury Library

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.

Research papers, The University of Auckland Library

Following the 2010–2011 Canterbury earthquakes, a renewed focus has been directed across New Zealand to the hazard posed by the country‘s earthquake-vulnerable buildings, namely unreinforced masonry (URM) and reinforced concrete (RC) buildings with potentially nonductile components that have historically performed poorly in large earthquakes. The research reported herein was pursued with the intention of addressing several recommendations made by the Canterbury Earthquakes Royal Commission of Inquiry which were classified into the following general categories:  Identification and provisional vulnerability assessment of URM and RC buildings and building components;  Testing, assessment, and retrofitting of URM walls loaded out-of-plane, with a particular focus on highly vulnerable URM cavity walls;  Testing and assessment of RC frame components, especially those with presumably non-ductile reinforcement detailing;  Portfolio management considering risks, regulations, and potential costs for a portfolio that includes several potentially earthquake-vulnerable buildings; and  Ongoing investigations and proposed research needs. While the findings from the reported research have implications for seismic assessments of buildings across New Zealand and elsewhere, an emphasis was placed on Auckland given this research program‘s partnership with the Auckland Council, the Auckland region accounting for about a third each of the country‘s population and economic production, and the number and variety of buildings within the Auckland building stock. An additional evaluation of a historic building stock was carried out for select buildings located in Hawke‘s Bay, and additional experimental testing was carried out for select buildings located in Hawke‘s Bay and Christchurch.

Research papers, University of Canterbury Library

In February of 2011, an earthquake destroyed the only all-weather athletics track in the city of Christchurch (New Zealand). The track has yet to be replaced, and so since the loss of the track, local Christchurch athletes have only had a grass track for training and preparation for championship events. This paper considers what effect the loss of the training facility has had on the performance of athletes from Christchurch at national championship events. Not surprisingly, the paper finds that there has been a deterioration in the performance in events that are heavily dependent upon the all-weather surface. However, somewhat more surprisingly, the loss of the track appears to have caused a significant improvement in the performance of Christchurch athletes in events that, while on the standard athletics program, are not heavily track dependent.

Research papers, University of Canterbury Library

Context of the project: On 4 September 2010, 22 February 2011, 13 June 2011 and 23 December 2011 Christchurch suffered major earthquakes and aftershocks (well over 10,000) that have left the central city in ruins and many of the eastern suburbs barely habitable even now. The earthquakes on 22 February caused catastrophic loss of life with 185 people killed. The toll this has taken on the residents of Christchurch has been considerable, not least of all for the significant psychological impact and disruption it has had on the children. As the process of rebuilding the city commenced, it became clear that the arts would play a key role in maintaining our quality of life during difficult times. For me, this started with the children and the most expressive of all the art forms – music.

Research papers, University of Canterbury Library

This paper presents preliminary results of an experimental campaign on three beam-column joint subassemblies extracted from a 22-storey reinforced concrete frame building constructed in late 1980s at the Christchurch’s Central Business District (CBD) area, damaged and demolished after the 2010-2011 Canterbury earthquakes sequence (CES). The building was designed following capacity design principles. Column sway (i.e., soft storey) mechanisms were avoided, and the beams were provided with plastic hinge relocation details at both beam-ends, aiming at developing plastic hinges away from the column faces. The specimens were tested under quasi-static cyclic displacement controlled lateral loading. One of the specimens, showing no visible residual cracks was cyclically tested in its as-is condition. The other two specimens which showed residual cracks varying between hairline and 1.0mm in width, were subjected to cyclic loading to simulate cracking patterns consistent with what can be considered moderate damage. The cracked specimens were then repaired with an epoxy injection technique and subsequently retested until reaching failure. The epoxy injection techniques demonstrated to be quite efficient in partly, although not fully, restoring the energy dissipation capacities of the damaged specimens at all beam rotation levels. The stiffness was partly restored within the elastic range and almost fully restored after the onset of nonlinear behaviour.

Research papers, University of Canterbury Library

Over 900 buildings in the Christchurch central business district and 10,000 residential homes were demolished following the 22nd of February 2011 Canterbury earthquake, significantly disrupting the rebuild progress. This study looks to quantify the time required for demolitions during this event which will be useful for future earthquake recovery planning. This was done using the Canterbury Earthquake Recovery Authority (CERA) demolition database, which allowed an in-depth look into the duration of each phase of the demolition process. The effect of building location, building height, and the stakeholder which initiated the demolition process (i.e. building owner or CERA) was investigated. The demolition process comprises of five phases; (i) decision making, (ii) procurement and planning, (iii) demolition, (iv) site clean-up, and (v) completion certification. It was found that the time required to decide to demolish the building made up majority of the total demolition duration. Demolition projects initiated by CERA had longer procurement and planning durations, but was quicker in other phases. Demolished buildings in the suburbs had a longer decision making duration, but had little effect on other phases of the demolition process. The decision making and procurement and planning phases of the demolition process were shorter for taller buildings, though the other phases took longer. Fragility functions for the duration of each phase in the demolition process are provided for the various categories of buildings for use in future studies.

Research papers, University of Canterbury Library

The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.

Research papers, University of Canterbury Library

This paper presents the preliminary conclusions of the first stage of Wellington Case Study project (Regulating For Resilience in an Earthquake Vulnerable City) being undertaken by the Disaster Law Research Group at the University of Canterbury Law School. This research aims to map the current regulatory environment around improving the seismic resilience of the urban built environment. This work provides the basis for the second stage of the project which will map the regulatory tools onto the reality of the current building stock in Wellington. Using a socio-legal methodology, the current research examines the regulatory framework around seismic resilience for existing buildings in New Zealand, with a particularly focus on multi-storey in the Wellington CBD. The work focusses both on the operation and impact of the formal seismic regulatory tools open to public regulators (under the amended Building Act) as other non-seismic regulatory tools. As well as examining the formal regulatory frame, the work also provides an assessment of the interactions between other non-building acts (such as Health and Safety at Work Act 2015) on the requirements of seismic resilience. Other soft-law developments (particularly around informal building standards) are also examined. The final output of this work will presents this regulatory map in a clear and easily accessible manner and provide an assessment of the suitability of this at times confusing and patchy legal environment as Wellington moves towards becoming a resilient city. The final conclusion of this work will be used to specifically examine the ability of Wellington to make this transition under the current regulatory environment as phase two of the Wellington Case Study project.

Videos, UC QuakeStudies

A video of a presentation by Associate Professor John Vargo during the fifth plenary of the 2016 People in Disasters Conference. Vargo is a senior researcher and co-leader of the Resilient Organisations Research Programme at the University of Canterbury. The presentation is titled, "Organisational Resilience is more than just Business Continuity".The abstract for this presentation reads as follows: Business Continuity Management is well-established process in many larger organisations and a key element in their emergency planning. Research carried out by resilient organisations follow the 2010 and 2011 Canterbury Earthquakes show that most small organisations did not have a business continuity plan (BCP), yet many of these organisations did survive the massive disruptions following the earthquakes. They were resilient to these catastrophic events, but in the absence of a BCP. This research also found that many of the organisations with BCP's, struggled to use them effectively when facing real events that did not align with the BCP. Although the BCPs did a good job of preparing organisations to deal with technology and operational disruptions, there was virtually no coverage for the continuity of people. Issues surrounding staff welfare and engagement were amongst the most crucial issues faced by Canterbury organisations, yet impacts of societal and personal disruption did not feature in BCPs. Resilience is a systematic way of looking at how an organization can survive a crisis and thrive in an uncertain world. Business continuity is an important aspect for surviving the crisis, but it is only part of the bigger picture addressed by organisational resilience. This presentation will show how organizational experiences in the Canterbury earthquakes support the need to move to a 'Business Continuity' for the '21st Century', one that incorporates more aspects of resilience, especially the 'people' areas of leadership, culture, staff welfare, and engagement.

Research papers, University of Canterbury Library

Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.

Research papers, The University of Auckland Library

Axial elongation of reinforced concrete (RC) plastic hinges has previously been observed in a range of laboratory experiments, and more recently was observed in several Christchurch buildings following the 2010/2011 Canterbury earthquakes. Axial restraint to plastic hinges is provided by adjacent structural components such as floors as the plastic hinges elongate, which can significantly alter the performance of the plastic hinge and potentially invalidate the capacity design strength hierarchy of the building. Coupling beams in coupled wall systems are particularly susceptible to axial restraint effects due to their importance in the strength hierarchy, the high ductility demands that they experience, and the large stiffness of bounding walls. From computational modelling it has been found that ignoring axial restraint effects when designing coupled walls can result in significantly increased strength, reduced ductility and reduced energy dissipation capacity. The complexity of the topic merits further research to better account for realistic restraint effects when designing coupled walls.

Research papers, University of Canterbury Library

The M7.8 Kaikoura Earthquake in 2016 presented a number of challenges to science agencies and institutions throughout New Zealand. The earthquake was complex, with 21 faults rupturing throughout the North Canterbury and Marlborough landscape, generating a localised seven metre tsunami and triggering thousands of landslides. With many areas isolated as a result, it presented science teams with logistical challenges as well as the need to coordinate efforts across institutional and disciplinary boundaries. Many research disciplines, from engineering and geophysics to social science, were heavily involved in the response. Coordinating these disciplines and institutions required significant effort to assist New Zealand during its most complex earthquake yet recorded. This paper explores that effort and acknowledges the successes and lessons learned by the teams involved.

Research papers, University of Canterbury Library

It is not a matter of if a major earthquake will happen in New Zealand, it is when. Earthquakes wreak havoc, cut off power and water supply, lines of communication, sewer, supply chains, and transport infrastructure. People get injured and whole communities can get cut off the rest of the country for extended periods of time. Countries taking measures to increase the population's preparedness tend to suffer less severe consequences than those that do not. Disaster management authorities deliver comprehensive instructions and preparation guidance, yet communities remain grossly underprepared. There are multiple factors that influence motivation for preparedness. Personal experience is one of the most significant factors that influence preparedness motivation. Not many people will experience a severe and damaging earthquake in their lifetime. A serious game (SG) that is a computer simulation of an earthquake is a tool that can let participants experience the earthquake and its aftermath from the safety of their computer. The main result of this research is a positive answer to the question: Can a serious game motivate people to prepare for earthquakes at least just as good as a personal experience of at least a moderate earthquake? There are different levels of immersion this serious game can be implemented at. In this thesis the same earthquake experience scenario – SG “ShakeUp” is implemented as a desktop application and a virtual reality (VR) application. A user study is conducted with the aim of comparing the motivation level achieved by the two versions of the SG “ShakeUp”. In this study no benefits of using VR over traditional desktop application were found: participants trying both versions of the SG “ShakeUp” reported similar levels of motivation to prepare for earthquakes immediately after the experiment. This means that both versions of the experience were equally effective in motivating participants to prepare for earthquakes. An additional benefit of this result is that the cheaper and easier to deliver desktop version can be widely used in various education campaigns. Participants reported being more motivated to prepare for earthquakes by either version of the SG “ShakeUp” than by any other contributing factor, including their previous earthquake experience or participation in a public education campaign. Both versions of the SG “ShakeUp” can successfully overcome personal bias, unrealistic optimism, pessimism, lack of perceived control over one’s earthquake preparation actions, fatalism, and sense of helplessness in the face of the earthquakes and motivate the individual to prepare for earthquakes. Participants without the prior earthquake experience benefit most from the SG “ShakeUp” regardless of the version tried, compared to the participants who had experienced an earthquake: significantly more of them will reconsider their current level of earthquake preparedness; about 24% more of them attribute their increased level of motivation to prepare for earthquakes to the SG “ShakeUp”. For every earthquake preparation action there is about 25% more people who felt motivated to do it after trying the SG “ShakeUp” than those who have done this preparation action before the experiment. After trying either version of the SG “ShakeUp”, people who live in a free standing house and those who live in a rental property reported highest levels of intent to carry on with the preparation actions. The proposed application prototype has been discussed with the University of Canterbury Earthquake Centre and received very positive feedback as having potential for practical use by various disaster management authorities and training institutions. The research shows that the SG “ShakeUp” motivates people to prepare for earthquakes as good as a personal earthquake experience and can be successfully used in various education campaigns.

Research papers, University of Canterbury Library

The south Leader Fault (SLF) is a newly documented active structure that ruptured the surface during the Mw 7.8 Kaikoura earthquake. The Leader Fault is a NNE trending oblique left lateral thrust that links the predominantly right lateral ‘The Humps’ and Conway-Charwell faults. The present research uses LiDAR at 0.5 m resolution and field mapping to determine the factors controlling the surface geometries and kinematics of the south Leader Fault ruptures at the ground surface. The SLF zone is up to 2km wide and comprises a series of echelon NE-striking thrusts linked by near-vertical N-S striking faults. The thrusts are upthrown to the west by up to 1 m and dip 35-45°. Thrust slip surfaces are parallel with Cretaceous-Cenozoic bedding and may reflect flexural slip folding. By contrast, the northerly striking faults dip steeply (65° west- 85° east), and accommodate up to 3m of oblique left lateral displacement at the ground surface and displace Cenozoic bedding. Some of the SLF has been mapped in bedrock, although none were known to be active prior to the earthquake or have a strong topographic expression. The complexity of fault rupture and the width of the fault zone appears to reflect the occurrence of faulting and folding at the ground surface during the earthquake.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

This study investigates the uncertainty of simulated earthquake ground motions for smallmagnitude events (Mw 3.5 – 5) in Canterbury, New Zealand. 148 events were simulated with specified uncertainties in: event magnitude, hypocentre location, focal mechanism, high frequency rupture velocity, Brune stress parameter, the site 30-m time-averaged shear wave velocity (Vs30), anelastic attenuation (Q) and high frequency path duration. In order to capture these uncertainties, 25 realisations for each event were generated using the Graves and Pitarka (2015) hybrid broadband simulation approach. Monte-Carlo realisations were drawn from distributions for each uncertainty, to generate a suite of simulation realisations for each event and site. The fit of the multiple simulation realisations to observations were assessed using linear mixed effects regression to generate the systematic source, path and site effects components across all ground motion intensity measure residuals. Findings show that additional uncertainties are required in each of the three source, path, and site components, however the level of output uncertainty is promising considering the input uncertainties included.

Audio, Radio New Zealand

The Logie Collection of Canterbury University is one of the small miracles of this country - treasures of the Ancient World from classical Greece and Rome, right back to the Bronze Age - 7000 BC. And when the first big earthquake struck Christchurch in September 2010, there were fears that the priceless collection - described as "one of Australasia's finest collections of classical art" would be utterly destroyed. Well it was and it wasn't. The Logie Collection has a brand-new home - the Teece Museum of Classical Antiquities - and last week it was proudly displayed in an exhibition called We Could Be Heroes. But it certainly didn't look like it at the time. Simon Morris is joined by Terri Elder and Penny Minchin-Garvin, the co-curators of the museum.

Research papers, University of Canterbury Library

Based on a qualitative study of four organisations involving 47 respondents following the extensive 2010 – 2011 earthquakes in Christchurch, New Zealand, this paper presents some guidance for human resource practitioners dealing with post-disaster recovery. A key issue is the need for the human resource function to reframe its practices in a post-disaster context, developing a specific focus on understanding and addressing changing employee needs, and monitoring the leadership behaviour of supervisors. This article highlights the importance of flexible organisational responses based around a set of key principles concerning communication and employee perceptions of company support.

Research papers, University of Canterbury Library

The 14 November 2016 Kaikōura earthquake had major impacts on New Zealand's transport system. Road, rail and port infrastructure was damaged, creating substantial disruption for transport operators, residents, tourists, and business owners in the Canterbury, Marlborough and Wellington regions, with knock-on consequences elsewhere. During both the response and recovery phases, a large amount of information and data relating to the transport system was generated, managed, analysed, and exchanged within and between organisations to assist decision making. To improve information and data exchanges and related decision making in the transport sector during future events and guide new resilience strategies, we present key findings from a recent post-earthquake assessment. The research involved 35 different stakeholder groups and was conducted for the Ministry of Transport. We consider what transport information was available, its usefulness, where it was sourced from, mechanisms for data transfer between organisations, and suggested approaches for continued monitoring.