
A photograph looking south down Manchester Street from the intersection of Gloucester Street. Bricks from an earthquake-damaged building cover the footpath. Wire fences have been placed around the building as a cordon. The SBS building can be seen in the distance.
A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. A large section of the building has crumbled, masonry spilling onto the footpath below. Wire fencing has been placed around the building as a cordon.
A photograph of the earthquake damage to the Kenton Chambers on Hereford Street. The bottom right section of the building has collapsed, the bricks and other rubble spilling onto the footpath below. Large cracks have formed between the windows of the building.
The damaged Cranmer Courts on the corner of Kilmore and Montreal Streets. The corner of the building has crumbled onto the street, which is now littered with broken masonry. Wire fencing placed around the building after the 4 September 2010 earthquake has managed to keep the debris away from the road.
Cordon fencing around the Arts Centre on Worcester Boulevard. A man with a hard hats and hi-vis vest on can be. Wooden bracing has been placed on the gable on the tower to limit further earthquake damage. There is a crane sitting inside the fenced area.
An outline, created in 2011, of the levels of service and condition of the horizontal infrastructure within the central city, providing a broad indication of damage, service levels provided to residents and business owners, and used to estimate the cost of repairs following the earthquake events.
A house on Avonside Drive showing damage from the 4 September 2010 earthquake. Numerous cracks in the masonry can be seen, and several sections of brick have fallen off the walls. The building's porch has also collapsed. A pile of dried liquefaction is visible in the driveway.
A house on Acland Avenue in Avonside that has been abandoned due to damage from the 4 September 2010 earthquake. The house's front garden has become overgrown and weeds have grown up through the cracks in its driveway. Its chimneys have collapsed and have been weather proofed with tarpaulins.
This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.
The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.
The Arts Centre photographed shortly after the 22 February 2011 earthquake. A large crack can be seen in the tower and part of the brickwork around the clock has collapsed onto the pavement below. Scaffolding was placed up against the building after the 4 September 2010 earthquake and the gable was braced with wooden planks. This probably limited the damage to this part of the building. The building has been cordoned off with tape reading, 'Danger keep out'. A sign in front of the door reads, 'Site closed'.
A photograph of the earthquake-damaged Observatory tower at the Christchurch Arts Centre. The photograph was taken using a cellphone camera. The top of the tower collapsed during the 22 February 2011 earthquake. The rubble from the tower has been cleared and a tarpaulin has been placed over the top of the broken tower. Tyres have been placed on the tarpaulin to hold it down. A temporary roof has also been constructed over the tower to keep out the rain. Two vehicles are parked in front.
Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.
A photograph of the largest section of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.
A photograph of a car on Manchester Street which has been crushed by falling rubble. Bricks and other rubble from the earthquake-damaged shops above are scattered across the road in front. The word "clear" has been spray-painted on the side of the car.
A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. One of the gables of the section of the building on the corner has crumbled. Ties have been placed around all of the gables as bracing.
A photograph of the earthquake damage to a Stonehurst Accommodation building on Gloucester Street. The bottom storey of the building has collapsed and the top two storeys are resting on the rubble. The closest wall of the building has also collapsed, exposing the rooms inside.
A photograph of the earthquake damage to Knox Church on the corner of Bealey Avenue and Victoria Street. The upper section of the walls have crumbled, the bricks falling onto the footpath. USAR codes have been spray-painted on the lower section of the wall.
A photograph of the earthquake damage to the Loyal Benevolent Lodge on Canon Street. The top of the façade has crumbled, and the bricks have fallen oto the ground, taking the awning with them. Plastic fencing has been placed around the building as a cordon.
A photograph of the earthquake damage to the buildings next to the Canterbury Trade Union Centre on Armagh Street. The front walls of both buildings have collapsed, and bricks spill onto the footpath. Cordon tape and road cones have been placed around the buildings.
A photograph of the earthquake damage to the buildings next to the Canterbury Trade Union Centre on Armagh Street. The front walls of both buildings have collapsed, and bricks spill onto the footpath. Cordon tape and road cones have been placed around the buildings.
A photograph of the earthquake damage to a Stonehurst Accommodation building on Gloucester Street. The bottom storey of the building has collapsed and the top two storeys are resting on the rubble. The closest wall of the building has also collapsed, exposing the rooms inside.
A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. The tops of the gables of the section of the building on the corner have crumbled. Ties have been placed around all of the gables as bracing.
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team walking across Manchester Street. In the background is a block of earthquake-damaged buildings. Large sections of the buildings have collapsed and the rubble has spilled onto the street below.
A photograph of the earthquake damage to St Paul's School in Dallington. Large cracks can be seen in the surface of the asphalt. Silt from liquefaction is visible in front of the school buildings. Tape has been placed on the building to keep people away.
A photograph looking north-west down High Street towards the intersection with Manchester Street. Rubble from several earthquake-damaged buildings lines both sides of the street. In the distance members of the Wellington Emergency Management Office Emergency Response Team and several excavators are working.
A photograph of the earthquake damage to the Knox Church on the corner of Bealey Avenue and Victoria Street. The gable walls have crumbled, exposing the wooden structure inside. Wire fencing, road cones and cordon tape have been placed around the building as a cordon.
A photograph looking west down Lichfield Street towards the intersection of Manchester Street. Bricks and other rubble from the earthquake-damaged buildings on either side of the road have scattered on the footpath and street. Road cones and plastic fencing has been used as cordons.