Transcript of Rodger C G Curragh's earthquake story, captured by the UC QuakeBox project.
A copy of the CanCERN online newsletter published on 16 August 2013
The "Lyttelton Review" newsletter for 30 January 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 19 December 2011, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 30 July 2012, produced by the Lyttelton Harbour Information Centre.
A copy of the CanCERN online newsletter published on 6 August 2011
A copy of the CanCERN online newsletter published on 15 July 2011
A copy of the CanCERN online newsletter published on 4 May 2012
Complaints about the response of emergency services after the February earthquake in Christchurch will be examined by a Coroner.
A photograph of members of Massey University's Veterinary Emergency Response Team (VERT) working in the central city red zone after the 22 February 2011 earthquake. VERT travelled to Christchurch after the 22 February 2011 earthquake in order to assist with caring for animals. Each member is wearing a hard hat, face masks, and a head lamp.
An entry from Ruth Gardner's blog for 22 February 2012 entitled, "Loss of Lives, Livelihood and Living".
Members of the USAID Disaster Assistance Response Team (DART) and the New Zealand Police on the Smiths City car park, which was severely damaged during the 22 February 2011 earthquake.
A pdf transcript of Jan's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team taking photograph through a car window. In the distance is the earthquake-damaged tower of the ChristChurch Cathedral.
The USAID Disaster Assistance Response Team (DART) photographed outside their headquarters in Latimer Square. Latimer Square was set up as a temporary headquarters for emergency management personnel after the 22 February 2011 earthquake.
A story submitted by Sue Hamer to the QuakeStories website.
There is growing expectation that local volunteers will play a more integrated role in disaster response, yet emergent groups are often ‘outsiders’ to crisis management, prompting questions of the conditions and processes by which these groups can forge relationships with established response agencies, and the tensions which can arise those interactions. This article analyses how student-led volunteers, as an emergent group, nevertheless gained “authority to operate” in the aftermath of the 2010-2011 earthquakes in Canterbury, New Zealand. Our study demonstrates how established response agencies and emergent groups can form hugely impactful and mutually supportive relationships. However, our analysis also points to two interrelated tensions that can arise, regarding the terms by which emergent groups are recognised, and the ‘distance’ considered necessary between emergent groups and established response agencies. The discussion considers implications for inclusiveness, risk and responsibility if emergent volunteers are to be further integrated into disaster response.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team climbing a stairway inside an earthquake-damaged house. Bricks have fallen from the storey above and have covered the stairs.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team climbing a stairway inside an earthquake-damaged house. Bricks have fallen from the storey above and have covered the stairs.
Members of the emergency response team look at a map of the campus at the Emergency House after the September earthquakes.
An entry from Jennifer Middendorf's blog for 31 May 2013 entitled, "1000 days".
An entry from Jennifer Middendorf's blog for 24 February 2011 entitled, "Checking in".
A story submitted by Lin to the QuakeStories website.
A story submitted by Joan Curry to the QuakeStories website.
This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.
An entry from Jennifer Middendorf's blog for 24 July 2011 entitled, "Being brave, and books in a fridge".
A pdf transcript of Robin Robins's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Maggie Blackwood.
A pdf transcript of Peter Ngatuere's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
Following the February 2011 earthquake, the Canterbury Branch of the TEU surveyed members to determine the psychological and physical impact of the earthquakes on members, in particular on their working conditions and ability to participate in consultation processes. 90 members responded, and this report gives a summary of the responses to short-answer questions and overall themes.