None
This is St Peters Riccarton. It was damaged in one of the two big Earthquakes to hit Christchurch in September 2010 and February 2011. Its taken a LONG time for work to really get going, but now that it is, they are also upgrading and extending the church with a modern annexe.
None
None
None
None
None
None
None
None
Utility managers are always looking for appropriate tools to estimate seismic damage in wastewater networks located in earthquake prone areas. Fragility curves, as an appropriate tool, are recommended for seismic vulnerability analysis of buried pipelines, including pressurised and unpressurised networks. Fragility curves are developed in pressurised networks mainly for water networks. Fragility curves are also recommended for seismic analysis in unpressurised networks. Applying fragility curves in unpressurised networks affects accuracy of seismic damage estimation. This study shows limitations of these curves in unpressurised networks. Multiple case study analysis was applied to demonstrate the limitations of the application of fragility curves in unpressurised networks in New Zealand. Four wastewater networks within New Zealand were selected as case studies and various fragility curves used for seismic damage estimation. Observed damage in unpressurised networks after the 2007 earthquake in Gisborne and the 2010 earthquake in Christchurch demonstrate the appropriateness of the applied fragility curves to New Zealand wastewater networks. This study shows that the application of fragility curves, which are developed from pressurised networks, cannot be accurately used for seismic damage assessment in unpressurised wastewater networks. This study demonstrated the effects of different parameters on seismic damage vulnerability of unpressurised networks.
It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.
The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.
Though generally considered “natural” disasters, cyclones and earthquakes are increasingly being associated with human activities, incubated through urban settlement patterns and the long-term redistribution of natural resources. As society is becoming more urbanized, the risk of human exposure to disasters is also rising. Architecture often reflects the state of society’s health: architectural damage is the first visible sign of emergency, and reconstruction is the final response in the process of recovery. An empirical assessment of architectural projects in post-disaster situations can lead to a deeper understanding of urban societies as they try to rebuild. This thesis offers an alternative perspective on urban disasters by looking at the actions and attitudes of disaster professionals through the lens of architecture, situated in recent events: the 2010 Christchurch earthquake, the 2010 Haiti earthquake, and the 2005 Hurricane Katrina. An empirical, multi-hazard, cross-sectional case study methodology was used, employing grounded theory method to build theory, and a critical constructivist strategy to inform the analysis. By taking an interdisciplinary approach to understanding disasters, this thesis positions architecture as a conduit between two divergent approaches to disaster research: the hazards approach, which studies the disaster cycles from a scientific perspective; and the sociological approach, which studies the socially constructed vulnerabilities that result from disasters, and the elements of social change that accompany such events. Few studies to date have attempted to integrate the multi-disciplinary perspectives that can advance our understanding of societal problems in urban disasters. To bridge this gap, this thesis develops what will be referred to as the “Rittelian framework”—based on the work of UC Berkeley’s architecture professor Horst Rittel (1930-1990). The Rittelian framework uses the language of design to transcend the multiple fields of human endeavor to address the “design problems” in disaster research. The processes by which societal problems are addressed following an urban disaster involve input by professionals from multiple fields—including economics, sociology, medicine, and engineering—but the contribution from architecture has been minimal to date. The main impetus for my doctoral thesis has been the assertion that most of the decisions related to reconstruction are made in the early emergency recovery stages where architects are not involved, but architects’ early contribution is vital to the long-term reconstruction of cities. This precipitated in the critical question: “How does the Rittelian framework contribute to the critical design decisions in modern urban disasters?” Comparative research was undertaken in three case studies of recent disasters in New Orleans (2005), Haiti (2010) and Christchurch (2010), by interviewing 51 individuals who were selected on the basis of employing the Rittelian framework in their humanitarian practice. Contextualizing natural disaster research within the robust methodological framework of architecture and the analytical processes of sociology is the basis for evaluating the research proposition that architectural problem solving is of value in addressing the ‘Wicked Problems’ of disasters. This thesis has found that (1) the nuances of the way disaster agents interpret the notion of “building back better” can influence the extent to which architectural professionals contribute in urban disaster recovery, (2) architectural design can be used to facilitate but also impede critical design decisions, and (3) framing disaster research in terms of design decisions can lead to innovation where least expected. This empirical research demonstrates how the Rittelian framework can inform a wider discussion about post-disaster human settlements, and improve our resilience through disaster research.
A non-destructive hardness testing method has been developed to investigate the amount of plastic strain demand in steel elements subjected to cyclic loading. The focus of this research is on application to the active links of eccentrically braced frames (EBFs), which are a commonly used seismic-resisting system in modern steel framed buildings. The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems fully into their inelastic state, generating a moderate to high level of plastic strain in EBF active links, for a range of buildings from 3 to 23 storeys in height. This raised two important questions: 1) what was the extent of plastic deformation in active links; and 2) what effect does that have to post-earthquake steel properties? This project comprised determining a robust relationship between hardness and plastic strain in order to be able to answer the first question and provide the necessary input into answering the second question. A non-destructive Leeb (portable) hardness tester (model TH170) has been used to measure the hardness, in order to determine the plastic strain, in hot rolled steel universal sections and steel plates. A bench top Rockwell B was used to compare and validated the hardness measured by the portable hardness tester. Hardness was measured from monotonically strained tensile test specimens to identify the relationship between hardness and plastic strain demand. Test results confirmed a good relationship between hardness and the amount of monotonically induced plastic strain. Surface roughness was identified as an important parameter in obtaining reliable hardness readings from a portable hardness reader. A proper surface preparation method was established by using three different cleaning methods, finished with hand sanding to achieve surface roughness coefficients sufficiently low not to distort the results. This work showed that a test surface roughness (Ra) is not more than 1.6 micron meter (μm) is required for accurate readings from the TH170 tester. A case study on an earthquake affected building was carried out to identify the relationship between hardness and amount of plastic strain demand in cyclically deformed active links. Hardness was carried out from active links shown visually to have been the most affected during one of the major earthquake events. Onsite hardness test results were then compared with laboratory hardness test results. A good relationship between hardness from onsite and laboratory was observed between the test methods; Rockwell B bench top and portable Leeb tester TH170. Manufacturing induced plastic strain in the top and bottom of the webs of hot rolled sections were discovered from this research, an important result which explains why visual effects of earthquake induced active link yielding (eg cracked or flaking paint) was typically more prevalent over the middle half depth of the active link. The extent of this was quantified. It was also evident that the hardness readings from the portable hardness tester are influenced by geometry, mass effects and rigidity of the links. The final experimental stage was application of the method to full scale cyclic inelastic tested nominally identical active links subjected to loading regimes comprising constant and variable plastic strain demands. The links were cyclically loaded to achieve different plastic strain level. A novel Digital Image Correlation (DIC) technique was incorporated during the tests of this scale, to confirm the level of plastic strain achieved. Tensile test specimens were water jet cut from cyclically deformed webs to analyse the level of plastic strain. Test results show clear evidence that cyclically deformed structural steel elements show good correlation between hardness and the amount of plastic strain demand. DIC method was found to be reliable and accurate to check the level of plastic strain within cyclically deformed structural steel elements.
“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011). Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008). In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists. But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings. Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch. The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions. Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities. Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.
New Zealand lies on the Pacific Ring of Fire – the belt of vulnerable, unpredictable fault lines which are the primary cause for earthquakes in this country. Most recently, as evident in the aftermath of the 2011 Christchurch earthquake -the destruction of the city centre led to the emergence of sub centres in different parts of the city each with different, desperate needs. The lack of preparedness in the wake of an earthquake hence, exacerbated this destitution. This research explores architecture’s role in the sub-centre. How can architecture facilitate resilience through this decentralised typology? The design-led approach critiques the implications of architecture as a tool for resilience whilst highlighting the desperate need for the engagement of architecture in planning before a disaster strikes. The resulting response explores resilience through an architectural lens that has a wider infrastructural, contextual and user-focussed need.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
As cities evolve, change and grow, the need and desire for adaptable architecture becomes evident across the nation. Architecture needs to undertake techniques that are flexible in order to adapt and align with the development of future generations in New Zealand. The Education industry is a primary example of a sector which requires flexibility within both classroom architectural form and interior configuration. This is a resultant of the recently updated Ministry of Education requirements; which state that every new classroom built or renovated nationwide, must implement the MoE classroom design standards for Innovative Learning Environments. ILE teaching spaces are configured as an open plan interior, supporting flexibility in classroom arrangement and teaching techniques. ILE classrooms are capable of evolving and adapting as educational practices evolve and change, allowing schools to remain modern and future focused. As part of this movement to ILE, the Ministry of Education has also recently made an attempt to improve the quality of temporary classrooms. This has been done by looking into the initiation of a programme that utilizes relocatable classroom buildings. Relocatable classrooms have been selected for multiple reasons, primarily flexibility. Flexibility is key for a school environment as it allows the school to actively respond to fluctuating school rolls. It is anticipated that the programme will provide a faster delivery process with a standardised design that allows the classrooms to be relocated from one school to another with relative ease. Following the devastating February 2011 earthquake the Greater Christchurch Region, the Education sector is in the midst of the Canterbury Schools Rebuild Programme. As a repercussion of this natural disaster, the majority of Christchurch schools have redevelopment or rebuild projects in progress, with preliminary design phases already in action for a small group of select schools regarded as high priority. The primary funding for these projects are sourced from insurance money, implementing tight budget restrictions, affecting the architectural design, quality and speed of the construction and repair works. The available funding limits the affordable classroom options to basic teaching spaces that have been stripped back to simple architectural forms, dictating not only the re-design, but also how our future generations will learn. Thus causing the development of the new student-led learning ILE concept to become controlled by existing construction techniques and the Rebuild Programmes budget restrictions. This thesis focuses on the future proofing of New Zealand schools by providing an affordable and time efficient alternative option to the current static, traditional construction, an option that has the ability to cater to the unpredictable fluctuating school rolls across the nation. This has been done by developing a prefabricated system for standalone classroom blocks. These blocks have the ability to be relocated between different school sites, dynamically catering to the unpredictable school roll numbers experienced across New Zealand. This site flexibility is reflected with the interior flexibility in the classrooms, enhancing the internal teaching space composition and challenges the existing design standards set by the Ministry of Education for Innovative Learning Environments. This system is called “Flexi-Ed”. Flexibility has been a key driver for this thesis, as the prefabricated structure is have to be flexible in three ways; first in the sense of being easy to assemble and disassemble. Second by offering flexible interior learning environments and thirdly the joints of the structure are designed with the ability to be flexible in order to cope with seismic activity. These three principles will provide schools with long term flexibility, minimal on-site interruption and heighten the standard of ILE across the nation. I strive to provide schools with long term flexibility and minimal site interruption, whilst heightening the standard of Innovative Learning Environments across New Zealand.
Architecture and music have a long intertwining history.These respective creative forces many times have collaborated into monumental place, harboured rich occasion, been catalyst for cultural movement and defined generations. Together they transcend their respective identities. From dinky local church to monstrous national stadia, together they are an intense concentration, a powerfully addictive dosage where architecture is the place, music is the faith, and people are the reason. Music is a programme that architecture often celebrates in poetic and grand fashion; a superficial excuse to symbolise their creative parallels. But their relationship is much richer and holds more value than just the opportunity to attempt architectural metaphor.While music will always overshadow the architecture in the sense of a singular event, architecture is like the soundman behind the mixing desk. It’s not the star front and centre grabbing your attention, but is responsible for framing the star. It is the foundational backdrop, a critical pillar. Great architecture can help make great music. In this sense music is a communication of architecture, it is the ultimate creative function. Christchurch, New Zealand, is a city whose story changed in an instant. The seismic events of 2010 and 2011 have become the overriding subject of its historical narrative, as it will be for years to come. Disaster redefines place (the town of Napier, struck by an earthquake in 1931, exemplifies this). There is no quantifiable justification for an exploration of architecture and music within the context of Christchurch. The Town Hall, one of New Zealand’s most architecturally significant buildings, is under repair. The Christ Church Cathedral will more than likely be rebuilt to some degree of its former self. But these are echoes of the city that Christchurch was.They are saved because they are artefact. Evidence of history.This thesis makes the argument for the new, the better than before, and for the making of opportunity from disaster, by proposing a ‘new’ town hall, conceived from the sound of old.
Diverse Density proposes an alternative housing strategy to the idealistic top-down process of housing development. The term ‘Top – down’ refers to a situation in which decisions are made by a few people in authority rather than by the people who are affected by the decisions (Cambridge). Problems/Position/Question: New Zealand’s urban housing is in a period of flux. Pressures of densification have permitted the intervention of medium density housing development schemes but these are not always successful. These typically top-down processes often result in internally focused design schemes that do not adhere to their specific context. The subsequent design outcomes can cause detrimental impacts to the local, urban and architectural conditions. With vast quantities of council regulations, building restrictions and design guidelines clouding over the housing sector, commonly referred to as ‘red tape’, occupant participation in the housing development sector is dwindling. A boundless separation between top-down and traditional housing processes has occurred and our existing neighbourhoods and historic architectural character are taking on the brunt of the problem. The thought-provoking, alternative housings strategies of key research theorists Alejandro Aravena and John Habraken frame positions that challenge contemporary densification methods with an alternative strategy. This position is addressed by endeavoring to answer; How can demands for denser housing achieve dynamic design responses that adhere to changes in occupancy, function and local site conditions? Aim: The aim of this thesis is to challenge New Zealand’s current housing densification methods by proposing an alternative densification strategy. Explicit devotion will be attributed to opposing top-down building developments. Secondly, this thesis aims to test a speculative site-specific housing model. The implementation of a Christchurch housing scenario will situate an investigative study to test the strategy and its ability to stimulate greater diversity, site responsiveness, functional adaptability and occupancy permutation. The post-earthquake housing conditions of Christchurch provide an appropriate scenario to test and implement design-led investigations. Objectives: The primary objectives of this design-led research investigation it to challenge the idealistic top-down method of developing density with a new method to: - Develop contextual architectural cohesion - Encourage residential diversity - Reinvigorate architectural autonomy - Respond to, and recognise, existing site conditions - Develop a housing model that: - Adapts to occupant functionality preferences - Caters to occupancy diversity - Achieves contextual responsiveness The proposition is addressed through a speculative design-led scenario study. A well-established Christchurch urban environment is adopted to implement and critique the envisioned alternative strategy. Development of the designs responsiveness, adaptability, and functionality produce a prototype housing model that actively adheres to its particular context. Implication: The implications of this research would be an alternative densification strategy to perceive the advancement of punctual assessment of building compliance. With accelerated building processes, the research may have implications for addressing New Zealand’s housing crisis whilst simultaneously providing diverse, personable and responsive architectural solutions. A more dynamic, up-to-date and responsive housing development sector would be informed.
This dissertation contains three essays on the impact of unexpected adverse events on student outcomes. All three attempt to identify causal inference using plausibly exogenous shocks and econometric tools, applied to rich administrative data. In Chapter 2, I present evidence of the causal effects of the 2011 Christchurch earthquake on tertiary enrolment and completion. Using the shock of the 2011 earthquake on high school students in the Canterbury region, I estimate the effect of the earthquake on a range of outcomes including tertiary enrolment, degree completion and wages. I find the earthquake causes a substantial increase in tertiary enrolment, particularly for low ability high school leavers from damaged schools. However, I find no evidence that low ability students induced by the earthquake complete a degree on time. In Chapter 3, I identify the impact of repeat disaster exposure on university performance, by comparing outcomes for students who experience their first earthquake while in university, to outcomes for students with prior earthquake exposure. Using a triple-differences estimation strategy with individual-by-year fixed effects, I identify a precise null effect, suggesting that previous experience of earthquakes is not predictive of response to an additional shock two years later. The final chapter investigates the impact of injuries sustained in university on academic performance and wages, using administrative data including no-fault insurance claims, emergency department attendance and hospital admissions, linked with tertiary enrolment. I find injuries, including minor injuries, have a negative effect on re-enrolment, degree completion and grades in university.
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
For some people, religion, spirituality and faith (RSF) serves an important function, helping them deal with difficult everyday life challenges. This qualitative ethnographic study examines how and in what ways a group of Cantabrians engaged with RSF in dealing with diverse forms of significant trauma – from moments of crisis through to more extended processes of recovery. The research is located within the context of post-earthquake Christchurch, and is based on fieldwork undertaken in 2012–2013. It explores the experiences of respondents representing traditional Christian and non-orthodox, non-Christian faith paths. The thesis draws on data from participant stories to emphasise the subjective experience of RSF and trauma. It argues that in times of crisis, some people draw on RSF to help them address difficult life challenges. The study demonstrates the breadth, diversity and significance of such resourcing, as well as the sometimes surprising, unanticipated forms that this engagement with RSF may take. Contrary to theories that emphasise the marginalisation of religion during times of intense distress, the thesis shows that in varying moments of crisis, people for whom RSF is important, may draw on diverse forms of RSF as a matter of priority to help them.
This dissertation explores the advocacy for the Christchurch Town Hall that occurred in 2012-2015 after the Canterbury Earthquakes. It frames this advocacy as an instance of collective-action community participation in a heritage decision, and explores the types of heritage values it expressed, particularly social values. The analysis contextualises the advocacy in post-quake Christchurch, and considers its relationship with other developments in local politics, heritage advocacy, and urban activism. In doing so, this dissertation considers how collective action operates as a form of public participation, and the practical implications for understanding and recognising social value. This research draws on studies of practices that underpin social value recognition in formal heritage management. Social value is held by communities outside institutions. Engaging with communities enables institutions to explore the values of specific places, and to realise the potential of activating local connections with heritage places. Such projects can be seen as participatory practices. However, these processes require skills and resources, and may not be appropriate for all places, communities and institutions. However, literature has understudied collective action as a form of community participation in heritage management. All participation processes have nuances of communities, processes, and context, and this dissertation analyses these in one case. The research specifically asked what heritage values (especially social values) were expressed through collective action, what the relationship was with the participation processes, communities, and wider situation that produced them, and the impact on institutional rhetoric and decisions. The research analysed values expressed in representations made to council in support of the Town Hall. It also used documentary sources and interviews with key informants to analyse the advocacy and decision-making processes and their relationships with the wider context and other grassroots activities. The analysis concluded that the values expressed intertwined social and professional values. They were related to the communities and circumstance that produced them, as an advocacy campaign for a civic heritage building from a Western architectural tradition. The advocacy value arguments were one of several factors that impacted the decision. They have had a lasting impact on rhetoric around the Town Hall, as was a heritage-making practice in its own right. This dissertation makes a number of contributions to the discussion of social value and community in heritage. It suggests connections between advocacy and participation perspectives in heritage. It recommends consideration of nuances of communities, context, and place meanings when using heritage advocacy campaigns as evidence of social value. It adds to the literature on heritage advocacy, and offers a focused analysis of one of many heritage debates that occurred in post-quake Christchurch. Ultimately, it encourages practice to actively integrate social and community values and to develop self-reflexive engagement and valuation processes. Despite inherent challenges, participatory processes offer opportunities to diversify understandings of value, co-produce heritage meanings with communities, and empower citizens in democratic processes around the places they live with and love.
New Zealand has experienced several strong earthquakes in its history. While an earthquake cannot be prevented from occurring, planning can reduce its consequences when it does occur. This dissertation research examines various aspects of disaster risk management policy in Aotearoa New Zealand. Chapter 2 develops a method to rank and prioritise high-rise buildings for seismic retrofitting in Wellington, the earthquake-prone capital city of New Zealand. These buildings pose risks to Wellington’s long-term seismic resilience that are of clear concern to current and future policymakers. The prioritization strategy we propose, based on multi-criteria decision analysis (MCDA) methods, considers a variety of data on each building, including not only its structural characteristics, but also its location, its economic value to the city, and its social importance to the community around it. The study demonstrates how different measures, within four general criteria – life safety, geo-spatial location of the building, its economic role, and its socio-cultural role – can be operationalized into a viable framework for determining retrofitting/demolition policy priorities. Chapter 3 and chapter 4 analyse the Residential Red Zone (RRR) program that was implemented in Christchurch after the 2011 earthquake. In the program, approximately 8,000 homeowners were told that their homes were no longer permittable, and they were bought by the government (through the Canterbury Earthquake Recovery Authority). Chapter 3 examines the subjective wellbeing of the RRR residents (around 16000 people) after they were forced to move. We consider three indicators of subjective wellbeing: quality of life, stress, and emotional wellbeing. We found that demographic factors, health conditions, and the type of government compensation the residents accepted, were all significant determinants of the wellbeing of the Red Zone residents. More social relations, better financial circumstances, and the perception of better government communication were also all associated positively with a higher quality of life, less stress, and higher emotional wellbeing. Chapter 4 concentrates on the impact of this managed retreat program on RRR residents’ income. We use individual-level comprehensive, administrative, panel data from Canterbury, and difference in difference evaluation method to explore the effects of displacement on Red Zone residential residents. We found that compared to non-relocated neighbours, the displaced people experience a significant initial decrease in their wages and salaries, and their total income. The impacts vary with time spent in the Red Zone and when they moved away. Wages and salaries of those who were red-zoned and moved in 2011 were reduced by 8%, and 5.4% for those who moved in 2012. Females faced greater decreases in wages and salaries, and total income, than males. There were no discernible impacts of the relocation on people’s self-employment income.
It is well established that urban green areas provide a wide range of social, aesthetic, environmental and economic benefits. The importance of urban green spaces has been known for decades; however the relationship between urban livability and green areas, as incorporated in overall urban green structure, has become the focus of international studies during the last 10 to 15 years. The spatial structure of green space systems has important consequences for urban form; configuring urban resources, controlling urban size, improving ecological quality of urban areas and preventing or mitigating natural disasters. However, in the field of architecture or urban design, very little work has been done to investigate the potential for built form to define and differentiate the edge to a green corridor ... This thesis therefore poses the hypothesis that architecture and urban design critically mediate between city and green corridor, through intensification and definition of the built edge, as a means of contributing to an ecological city form.
This topic was chosen in response to the devastation caused to Cathedral Square, Christchurch, New Zealand following earthquakes in 2010 and 2011. Working amongst the demolition bought to attention questions about how to re-conceive the square within the rebuilt city. In particular, it raised questions as to how a central square could be better integrated and experienced as a contemporary addition to Christchurch city. This thesis seeks to investigate the ways in which central squares can be better integrated with the contemporary city and how New Urbanist design principles can contribute toward this union. The research principally focuses on the physical and spatial integration of the square with the contemporary city. A drawing-based analysis of select precedent case studies helped to determine early on that overall integration of the contemporary square could be attributed to several interdependent criteria. The detailed studies are supplemented further with literature-based research that narrowed the criteria to five integrative properties. These are: identity, scale and proportion, use, connectivity and natural landscape. These were synthesised, in part, from the integrative New Urbanist movement and the emerging integrative side of the more contemporary Post Urbanist movement. The literature-based research revealed that a more inclusive approach toward New Urbanist and Post Urbanist design methodologies may also produce a more integrated and contemporary square. Three design case studies, using the redesign of Cathedral Square, were undertaken to test this hypothesis. The case studies found that overall, integration was reliant on a harmonious balance between the five integrative properties, concluding that squares can be better integrated with the contemporary city. Further testing of the third concept, which embraced an allied New Urbanist / Post Urbanist approach to design, found that New Urbanism was limited in its contribution toward the integration of the square.
Christchurch was struck by a 6.3 magnitude earthquake on the 22 February 2011. The quake devastated the city, taking lives and causing widespread damage to the inner city and suburban homes. The central city lost over half its buildings and over 7000 homes were condemned throughout Christchurch. The loss of such a great number of homes has created the requirement for new housing to replace those that were lost. Many of which were located in the eastern, less affluent, suburbs. The response to the housing shortage is the planned creation of large scale subdivisions on the outskirts of the city. Whilst this provides the required housing it creates additional sprawl to a city that does not need it. The extension of Christchurch’s existing suburban sprawl puts pressure on roading and pushes residents further out of the city, creating a disconnection between them. Christchurch’s central city had a very small residential population prior to the earthquakes with very few options for dense inner city living. The proposed rebuild of the inner city calls for a new ‘dense, vibrant and diverse central hub’. Proposing the introduction of new residential units within the central city. However the placement of the low-rise housing in a key attribute of the rebuild, the eastern green ‘Frame’, diminishes its value as open green space. The proposed housing will also be restrictive in its target market and therefore the idea of a ‘vibrant’ inner city is difficult to achieve. This thesis acts as response to the planned rebuild of inner Christchurch. Proposing the creation of a model for inner city housing which provides an alternative option to the proposed housing and existing and ongoing suburban sprawl. The design options were explored through a design-led process were the options were critiqued and developed. The ‘final’ proposal is comprises of three tall towers, aptly named the Triple Towers, which condense the proposed low-rise housing from an 11000 square metre footprint to combined footprint of 1500 square metres. The result is an expansion of the publicly available green space along the proposed eastern frame of the city. The height of the project challenges the height restrictions and is provocative in its proposal and placement. The design explores the relationships between the occupants, the building, the ‘Frame’ and the central city. The project is discussed through an exploration of the architecture of Rem Koolhaas, Renzo Piano and Oscar Niemeyer. Rather than their architecture being taken as a direct influence on which the design is based the discussion revolves around how and why each piece of comparative architecture is relevant to the designs desired outcome.