Search

found 4 results

Research papers, University of Canterbury Library

High-quality ground motion records are required for engineering applications including response history analysis, seismic hazard development, and validation of physics-based ground motion simulations. However, the determination of whether a ground motion record is high-quality is poorly handled by automation with mathematical functions and can become prohibitive if done manually. Machine learning applications are well-suited to this problem, and a previous feed-forward neural network was developed (Bellagamba et al. 2019) to determine high-quality records from small crustal events in the Canterbury and Wellington regions for simulation validation. This prior work was however limited by the omission of moderate-to-large magnitude events and those from other tectonic environments, as well as a lack of explicit determination of the minimum usable frequency of the ground motion. To address these shortcomings, an updated neural network was developed to predict the quality of ground motion records for all magnitudes and all tectonic sources—active shallow crustal, subduction intraslab, and subduction interface—in New Zealand. The predictive performance of the previous feed-forward neural network was matched by the neural network in the domain of small crustal records, and this level of predictive performance is now extended to all source magnitudes and types in New Zealand making the neural network applicable to global ground motion databases. Furthermore, the neural network provides quality and minimum usable frequency predictions for each of the three orthogonal components of a record which may then be mapped into a binary quality decision or otherwise applied as desired. This framework provides flexibility for the end user to predict high-quality records with various acceptability thresholds allowing for this neural network to be used in a range of applications.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES), induced extensive damage in residential buildings and led to over NZ$40 billion in total economic losses. Due to the unique insurance setting in New Zealand, up to 80% of the financial losses were insured. Over the CES, the Earthquake Commission (EQC) received more than 412,000 insurance claims for residential buildings. The 4 September 2010 earthquake is the event for which most of the claims have been lodged with more than 138,000 residential claims for this event only. This research project uses EQC claim database to develop a seismic loss prediction model for residential buildings in Christchurch. It uses machine learning to create a procedure capable of highlighting critical features that affected the most buildings loss. A future study of those features enables the generation of insights that can be used by various stakeholders, for example, to better understand the influence of a structural system on the building loss or to select appropriate risk mitigation measures. Previous to the training of the machine learning model, the claim dataset was supplemented with additional data sourced from private and open access databases giving complementary information related to the building characteristics, seismic demand, liquefaction occurrence and soil conditions. This poster presents results of a machine learning model trained on a merged dataset using residential claims from the 4 September 2010.

Research papers, University of Canterbury Library

With sea level rise (SLR) fast becoming one of the most pressing matters for governments worldwide, there has been mass amounts of research done on the impacts of SLR. However, these studies have largely focussed on the ways that SLR will impact both the natural and built environment, along with how the risk to low-lying coastal communities can be mitigated, while the inevitable impacts that this will have on mental well-being has been understudied. This research has attempted to determine the ways in which SLR can impact the mental well-being of those living in a low-lying coastal community, along with how these impacts could be mitigated while remaining adaptable to future environmental change. This was done through conducting an in-depth literature review to understand current SLR projections, the key components of mental well-being and how SLR can influence changes to mental well-being. This literature review then shaped a questionnaire which was distributed to residents of the New Brighton coastline. This questionnaire asked respondents how they interact with the local environment, how much they know about SLR and its associated hazards, whether SLR causes any level of stress or worry along with how respondents feel that these impacts could be mitigated. This research found that SLR impacts the mental well-being of those living in low-lying coastal communities through various methods: firstly, the respondents perceived risk to SLR and its associated hazards, which was found to be influenced by the suburbs that respondents live in, their knowledge of SLR, their main sources of information and the prior experience of the Canterbury Earthquake Sequence (CES). Secondly, the financial aspects of SLR were also found to be drivers of stress or worry, with depreciating property values and rising insurance premiums being frequently noted by respondents. It was found that the majority of respondents agreed that being involved in and informed of the protection process, having more readable and accurate information, and an increased engagement with community events and greenspaces would help to reduce the stress or worry caused by SLR, while remaining adaptable to future environmental change.

Research papers, University of Canterbury Library

Recent global tsunami events have highlighted the importance of effective tsunami risk management strategies (including land-use planning, structural and natural defences, warning systems, education and evacuation measures). However, the rarity of tsunami means that empirical data concerning reactions to tsunami warnings and tsunami evacuation behaviour is rare when compared to findings about evacuations to avoid other sources of hazard. To date empirical research into tsunami evacuations has focused on evacuation rates, rather than other aspects of the evacuation process. More knowledge is required about responses to warnings, pre-evacuation actions, evacuation dynamics and the return home after evacuations. Tsunami evacuation modelling has the potential to inform evidence-based tsunami risk planning and response. However to date tsunami evacuation models have largely focused on timings of evacuations, rather than evacuation behaviours. This Masters research uses a New Zealand case study to reduce both of these knowledge gaps. Qualitative survey data was gathered from populations across coastal communities in Banks Peninsula and Christchurch, New Zealand, required to evacuate due to the tsunami generated by the November 14th 2016 Kaikōura Earthquake. Survey questions asked about reactions to tsunami warnings, actions taken prior to evacuating and movements during the 2016 tsunami evacuation. This data was analysed to characterise trends and identify factors that influenced evacuation actions and behaviour. Finally, it was used to develop an evacuation model for Banks Peninsula. Where appropriate, the modelling inputs were informed by the survey data. Three key findings were identified from the results of the evacuation behaviour survey. Although 38% of the total survey respondents identified the earthquake shaking as a natural cue for the tsunami, most relied on receiving official warnings, including sirens, to prompt evacuations. Respondents sought further official information to inform their evacuation decisions, with 39% of respondents delaying their evacuation in order to do so. Finally, 96% of total respondents evacuated by car. This led to congestion, particularly in more densely populated Christchurch city suburbs. Prior to this research, evacuation modelling had not been completed for Banks Peninsula. The results of the modelling showed that if evacuees know how to respond to tsunami warnings and where and how to evacuate, there are no issues. However, if there are poor conditions, including if people do not evacuate immediately, if there are issues with the roading network, or if people do not know where or how to evacuate, evacuation times increase with there being more bottlenecks leading out of the evacuation zones. The results of this thesis highlight the importance of effective tsunami education and evacuation planning. Reducing exposure to tsunami risk through prompt evacuation relies on knowledge of how to interpret tsunami warnings, and when, where and how to evacuate. Recommendations from this research outline the need for public education and engagement, and the incorporation of evacuation signage, information boards and evacuation drills. Overall these findings provide more comprehensive picture of tsunami evacuation behaviour and decision making based on empirical data from a recent evacuation, which can be used to improve tsunami risk management strategies. This empirical data can also be used to inform evacuation modelling to improve the accuracy and realism of the evacuation models.