Search

found 101 results

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 caused widespread liquefaction in many parts of Christchurch. Observations from the CES highlight some sites were liquefaction was predicted by the simplified method but did not manifest. There are a number of reasons why the simplified method may over-predict liquefaction, one of these is the dynamic interaction between soil layers within a stratified deposit. Soil layer interaction occurs through two key mechanisms; modification of the ground motion due to seismic waves passing through deep liquefied layers, and the effect of pore water seepage from an area of high excess pore water pressure to the surrounding soil. In this way, soil layer interaction can significantly alter the liquefaction behaviour and surface manifestation of soils subject to seismic loading. This research aimed to develop an understanding of how soil layer interaction, in particular ground motion modification, affects the development of excess pore water pressures and liquefaction manifestation in a soil deposit subject to seismic loading. A 1-D soil column time history Effective Stress Analysis (ESA) was conducted to give an in depth assessment of the development of pore pressures in a number of soil deposits. For this analysis, ground motions, soil profiles and model parameters were required for the ESA. Deconvolution of ground motions recorded at the surface during the CES was used to develop some acceleration time histories to input at the base of the soil-column model. An analysis of 55 sites around Christchurch, where detailed site investigations have been carried out, was then conducted to identify some simplified soil profiles and soil characteristics. From this analysis, four soil profiles representative of different levels of liquefaction manifestation were developed. These were; two thick uniform and vertically continuous sandy deposits that were representative of sites were liquefaction manifested in both the Mw 7.1 September 2010 and the Mw 6.3 February 2011 earthquakes, and two vertically discontinuous profiles with interlayered liquefiable and non-liquefiable layers representative of sites that did not manifest liquefaction in either the September 2010 or the February 2011 events. Model parameters were then developed for these four representative soil profiles through calibration of the constitutive model in element test simulations. Simulations were run for each of the four profiles subject to three levels of loading intensity. The results were analysed for the effect of soil layer interaction. These were then compared to a simplified triggering analysis for the same four profiles to determine where the simplified method was accurate in predicting soil liquefaction (for the continuous sandy deposits) and were it was less accurate (the vertically discontinuous deposits where soil layer interaction was a factor).

Research papers, University of Canterbury Library

Previous earthquakes demonstrated destructive effects of soil-structure interaction on structural response. For example, in the 1970 Gediz earthquake in Turkey, part of a factory was demolished in a town 135 km from the epicentre, while no other buildings in the town were damaged. Subsequent investigations revealed that the fundamental period of vibration of the factory was approximately equal to that of the underlying soil. This alignment provided a resonance effect and led to collapse of the structure. Another dramatic example took place in Adapazari, during the 1999 Kocaeli earthquake where several foundations failed due to either bearing capacity exceedance or foundation uplifting, consequently, damaging the structure. Finally, the Christchurch 2012 earthquakes have shown that significant nonlinear action in the soil and soil-foundation interface can be expected due to high levels of seismic excitation and spectral acceleration. This nonlinearity, in turn, significantly influenced the response of the structure interacting with the soil-foundation underneath. Extensive research over more than 35 years has focused on the subject of seismic soil-structure interaction. However, since the response of soil-structure systems to seismic forces is extremely complex, burdened by uncertainties in system parameters and variability in ground motions, the role of soil-structure interaction on the structural response is still controversial. Conventional design procedures suggest that soil-structure interaction effects on the structural response can be conservatively ignored. However, more recent studies show that soil-structure interaction can be either beneficial or detrimental, depending on the soil-structure-earthquake scenarios considered. In view of the above mentioned issues, this research aims to utilise a comprehensive and systematic probabilistic methodology, as the most rational way, to quantify the effects of soil-structure interaction on the structural response considering both aleatory and epistemic uncertainties. The goal is achieved by examining the response of established rheological single-degree-of-freedom systems located on shallow-foundation and excited by ground motions with different spectral characteristics. In this regard, four main phases are followed. First, the effects of seismic soil-structure interaction on the response of structures with linear behaviour are investigated using a robust stochastic approach. Herein, the soil-foundation interface is modelled by an equivalent linear cone model. This phase is mainly considered to examine the influence of soil-structure interaction on the approach that has been adopted in the building codes for developing design spectrum and defining the seismic forces acting on the structure. Second, the effects of structural nonlinearity on the role of soil-structure interaction in modifying seismic structural response are studied. The same stochastic approach as phase 1 is followed, while three different types of structural force-deflection behaviour are examined. Third, a systematic fashion is carried out to look for any possible correlation between soil, structural, and system parameters and the degree of soil-structure interaction effects on the structural response. An attempt is made to identify the key parameters whose variation significantly affects the structural response. In addition, it is tried to define the critical range of variation of parameters of consequent. Finally, the impact of soil-foundation interface nonlinearity on the soil-structure interaction analysis is examined. In this regard, a newly developed macro-element covering both material and geometrical soil-foundation interface nonlinearity is implemented in a finite-element program Raumoko 3D. This model is then used in an extensive probabilistic simulation to compare the effects of linear and nonlinear soil-structure interaction on the structural response. This research is concluded by reviewing the current design guidelines incorporating soil-structure interaction effects in their design procedures. A discussion is then followed on the inadequacies of current procedures based on the outcomes of this study.

Research papers, University of Canterbury Library

Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.

Research papers, University of Canterbury Library

As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch, and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil, while the liquefaction potential and vertical settlement are often calculated higher than those measured after the Canterbury earthquake sequence. To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards, separated into stratigraphic layers, and laboratory tests were conducted on representative samples. Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the case in much of northwest Christchurch where similar soils are found. The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method, raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the tested assessment parameters made very little to no changes to the soil behaviour type plots. The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type boundaries is proposed as follows:  Ic < 1.31 – Gravelly sand to dense sand  1.31 < Ic < 1.90 – Sands: clean sand to silty sand  1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt  2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay  3.20 < Ic < 3.60 – Clays: silty clay to clay  Ic > 3.60 – Organics soils: peats. When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67% showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic ii values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement. This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.

Research papers, University of Canterbury Library

This poster discusses several possible approaches by which the nonlinear response of surficial soils can be explicitly modelled in physics-based ground motion simulations, focusing on the relative advantages and limitations of the various methodologies. These methods include fully-coupled 3D simulation models that directly allow soil nonlinearity in surficial soils, the domain reduction method for decomposing the physical domain into multiple subdomains for separate simulation, conventional site response analysis uncoupled from the simulations, and finally, the use of simple empirically based site amplification factors We provide the methodology for an ongoing study to explicitly incorporate soil nonlinearity into hybrid broadband simulations of the 2010-2011 Canterbury, New Zealand earthquakes.

Research papers, University of Canterbury Library

Current research in geotechnical engineering at the University of Canterbury includes a number of laboratory testing programmes focussed on understanding the behaviour of natural soil deposits in Christchurch during the 2010-2011 Canterbury Earthquake Sequence. Many soils found in Christchurch are sands or silty sands with little to no plasticity, making them very difficult to sample using established methods. The gel-push sampling methodology, developed by Kiso-Jiban Consultants in Japan, was developed to address some of the deficiencies of existing sampling techniques and has been deployed on two projects in Christchurch. Gel push sampling is carried out with a range of samplers which are modified versions of existing technology, and the University of Canterbury has acquired three versions of the tools (GP-S, GP-Tr, GP-D). Soil samples are extracted from the bottom of a freshly drilled borehole and are captured within a liner barrel, close to 1m in length. A lubricating polymer gel coats the outside of the soil sample as it enters the liner barrel. The frictional rubbing which normally occurs on the sides of the soil samples using existing techniques is eliminated by the presence of the polymer gel. The operation of the gel-push samplers is significantly more complicated than conventional push-tube samplers, and in the initial trials a number of operational difficulties were encountered, requiring changes to the sampling procedures. Despite these issues, a number of high quality soil samples were obtained on both projects using the GP-S sampler to capture silty soil. Attempts were made to obtain clean sands using a different gel-push sampler (GP-TR) in the Red Zone. The laboratory testing of these sands indicated that they were being significantly disturbed during the sampling and/or transportation procedures. While it remains too early to draw definitive conclusions regarding the performance of the gel-push samplers, the methodology has provided some promising results. Further trialling of the tools are required to refine operating procedures understand the full range of soil conditions which can be successfully sampled using the tools. In parallel with the gel-push trials, a Dames and Moore fixed-piston sampler has been used by our research partners from Berkeley to obtain soil samples at a number of sites within Christchurch. This sampler features relatively short (50cm), thin-walled liner barrels which is advanced into the ground under the action of hydraulic pressure. By reducing the overall length of the soil being captured, the disturbance to the soil as it enters the liner barrel is significantly reduced. The Dames and Moore sampler is significantly easier to operate than the gel-push sampler, and past experience has shown it to be successful in soft, plastic materials (i.e. clays and silty clays). The cyclic resistance of one silty clay obtained using both the gel-push and Dames & Moore samplers has been found to be very similar, and ongoing research aims to establish whether similar results are obtained for different soil types, including silty materials and clean sands.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.

Research papers, University of Canterbury Library

Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.

Research papers, University of Canterbury Library

This paper presents an overview of the soil profile characteristics at strong motion station (SMS) locations in the Christchurch Central Business District (CBD) based on recently completed geotechnical site investigations. Given the variability of Christchurch soils, detailed investigations were needed in close vicinity to each SMS. In this regard, CPT, SPT and borehole data, and shear wave velocity (Vs) profiles from surface wave dispersion data in close vicinity to the SMSs have been used to develop detailed representative soil profiles at each site and to determine site classes according to the New Zealand standard NZS1170.5. A disparity between the NZS1170.5 site classes based on Vs and SPT N60 investigation techniques is highlighted, and additional studies are needed to harmonize site classification based on these techniques. The short period mode of vibration of soft deposits above gravels, which are found throughout Christchurch, are compared to the long period mode of vibration of the entire soil profile to bedrock. These two distinct modes of vibration require further investigation to determine their impact on the site response. According to current American and European approaches to seismic site classification, all SMSs were classified as problematic soil sites due to the presence of liquefiable strata, soils which are not directly accounted for by the NZS1170.5 approach.

Research papers, University of Canterbury Library

Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.

Research papers, University of Canterbury Library

This presentation summarizes the development of high-resolution surficial soil velocity models in the Canterbury, New Zealand basin. Shallow (<30m) shear wave velocities were primarily computed based on a combination of a large database of over 15,000 cone penetration test (CPT) logs in and around Christchurch, and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. Large active-source testing at 22 locations and ambient-wavefield surface wave and H/V testing at over 80 locations were utilized in combination with 1700 water well logs to constrain the inter-bedded stratigraphy and velocity of Quaternary sediments up to depths of several hundred meters. Finally, seismic reflection profiles and the ambient-wavefield surface wave data provide constraint on velocities from several hundred meters to several kilometres. At all depths, the high resolution data illustrates the complexity of the soil conditions in the region, and the developed 3D models are presently being used in broadband ground motion simulations to further interpret the observed strong ground motions in the 2010-2011 Canterbury earthquake sequence.

Research papers, University of Canterbury Library

Structural pounding may be defined as the collisions occurring between adjacent dynamically excited structures which lack a sufficient separation gap between them. Extensive theoretical and experimental studies have been conducted to investigate this phenomenon. However, the majority, if not all, of these studies fail to consider the flexibility of the soil upon which these structures are constructed. This study aims to investigate the degree of approximation inherent in previous pounding studies which neglected this important feature. In this study, two aspects of soil flexibility effects on dynamic structural response were investigated: the influence of the supporting soil properties on the individual structures (soil-structure interaction) and the through-soil interaction between the foundations of the adjacent structures. Two structural configurations of reinforced concrete moment-resistant frames were considered: the case of two adjacent twelve-storey frames and the pounding of a twelve- and six-storey frames. Four cases of external excitation were investigated: two actual earthquake records applied from two directions each. A nonlinear inelastic dynamic analysis software package developed at the University of Canterbury has been utilized in this study. Suitable numerical models were developed for the through-soil interaction phenomenon and for the structures, which were designed in accordance to the relevant New Zealand design codes. Soilstructure interaction was represented by means of existing models available in the literature. Various separation gaps were provided and the results were compared with the no pounding case. Storey-level impacts only were considered. The pounding response in which soil flexibility was accounted for was compared to the fixed base response for each of the separation gaps incorporated in this study. A high variation in the results was witnessed, indicating the significance of consideration of soil flexibility effects. In addition, the importance of excitation direction was highlighted in this study. The relative storey accelerations were more dependent on the characteristics of the excitation rather than on the magnitudes of the impact forces. Recommendations were proposed which aim towards the generalization of the results of this study.

Research papers, University of Canterbury Library

This paper summarizes the development of a high-resolution surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. This near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, as well as use in site response analysis and ground motion simulation.

Research papers, University of Canterbury Library

This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized

Research papers, University of Canterbury Library

Results from a series of 1D seismic effective stress analyses of natural soil deposits from Christchurch are summarized. The analysed soil columns include sites whose performance during the 2010-2011 Canterbury earthquakes varied significantly, from no liquefaction manifestation at the ground surface to very severe liquefaction, in which case a large area of the site was covered by thick soil ejecta. Key soil profile characteristics and response mechanisms affecting the severity of surface liquefaction manifestation and subsequent damage are explored. The influence of shaking intensity on the triggering and contribution of these mechanisms is also discussed. Careful examination of the results highlights the importance of considering the deposit as a whole, i.e. a system of layers, including interactions between layers in the dynamic response and through pore water pressure redistribution and water flow.

Research papers, University of Canterbury Library

This paper summarizes the development of a region-wide surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. The ongoing development of this near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, and the identification of regional similarities and differences in soil shear stiffness.

Research papers, University of Canterbury Library

The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.

Research papers, University of Canterbury Library

One of the less understood geotechnical responses to the cyclic loading from the MW6.2 Christchurch Earthquake, on the 22nd of February 2011, is the fissuring in the loessial soil-mantled, footslope positions of the north-facing valleys of the Port Hills. The fissures are characterized by mostly horizontal offset (≤500mm), with minor vertical displacement (≤300mm), and they extend along both sides of valleys for several hundred metres in an approximately contour-parallel orientation. The fissure traces correspond to extensional features mapped in other studies. Previous studies have suggested that the fissures are the headscarps of incipient landslides, but the surface and subsurface features are not typical of landslide movement. Whilst there are some features that correlate with landslide movement, there are many features that contradict the landslide movement hypothesis. Of critical importance to this investigation was the fact that there are no landslide flanks, there has been no basal shear surface found, there is little deformation in the so-called ‘landslide body’, and there have been no recorded zones of low shear strength in the soil deposit that are indicative of a basal shear surface. This thesis is a detailed geotechnical study on the fissures along part of Ramahana Road in the Hillsborough Valley, Christchurch. Shallow and deep investigation methods found that the predominant soil is loess-colluvium, to depths of ~20m, and this soil has variable geotechnical characteristics depending on the layer sampled. The factor that has the most influence on shear strength was found to be the moisture content. Direct shear-box testing of disturbed, recompacted loess-colluvium found that the soil had a cohesion of 35-65kPa and a friction angle of 38-43° when the soil moisture content was at 8-10%. However when the moisture content was at 19-20% the soil’s cohesion decreased to 3-5kPa and its friction angle decreased to 33-38°, this moisture content is at or slightly above the plastic limit. An electrical resistivity geophysical survey was conducted perpendicular to multiple fissure traces and through the compressional zone at 17 Ramahana Road. The electrical resistivity line found that there was an area of high resistivity at the toe of the slope, and an area of high conductivity downslope of this and at greater depths. This area correlated to the compressional zone recorded by previous studies. Moisture content testing of the soil in these locations showed that the soil in the resistive area was relatively dry (9%) compared to the surrounding soil (13%), whilst the soil in the conductive area was relatively wet (22%)compared to the surrounding soil (19%). Density tests of the soil in the compressional zone recorded that the resistive area had a higher dry density than the surrounding soil (~1790 kg/m3 compared to ~1650 kg/m3). New springs arose downslope of the compressional zone contemporaneously with the fissures, and it is interpreted that these have arisen from increased hydraulic head in the Banks Peninsula bedrock aquifer system, and earthquake induced-bedrock fracturing. A test pit was dug across an infilled fissure trace at 17 Ramahana Road to a depth of 3m. The fissure trace had an aperture of 450-470mm at the ground surface, but it gradually lost aperture with depth until 2.0-2.1m where it became a segmented fissure trace with 1-2mm aperture. A mixed-colluvium layer was intercepted by the fissure trace at 2.4m depth, and there was no observable vertical offset of this layer. The fissure trace was at an angle of 78° at the ground surface, but it also flattened with depth, which gave it a slightly curved appearance. The fissure trace was at an assumed angle of 40-50° near the base of the test pit. Rotational slide, translational slide and lateral spread landslide movement types were compared and contrasted as possibilities for landslide movement types, whilst an alternative hypothesis was offered that the fissures are tensile failures with a quasi-toppling motion involving a cohesive block of loessial soil moving outwards from the slope, with an accommodating compressional strain in the lower less cohesive soil. The mechanisms behind this movement are suggested to be the horizontal earthquake inertia forces from the Christchurch Earthquake, the static shear stress of the slope, and bedrock uplift of the Port Hills in relation to the subsidence of the Christchurch city flatlands. Extremely high PGA is considered to be a prerequisite to the fissure trace development, and these can only be induced in the Hillsborough Valley from a Port Hills Fault rupture, which has a recurrence interval of ~10,000 years. The current understanding of how the loess-colluvium soil would behave under cyclic loading is limited, and the mechanisms behind the suggested movement type are not completely understood. Further research is needed to confirm the proposed mechanism of the fissure traces. Laboratory tests such as the cyclic triaxial and cyclic shear test would be beneficial in future research to quantitatively test how the soil behaves under cyclic loading at various moisture contents and clay contents, and centrifuge experiments would be of great use to qualitatively test the suggested mode of movement in the loessial soil.

Research papers, University of Canterbury Library

A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.

Research papers, University of Canterbury Library

This report presents an overview of the soil profile characteristics at a number of strong motion station (SMS) sites in Christchurch and its surrounds. An extensive database of ground motion records has been captured by the SMS network in the Canterbury region during the Canterbury earthquake sequence. However in order to comprehensively understand the ground motions recorded at these sites and to be able to relate these motions to other locations, a detailed understanding of the shallow geotechnical profile at each SMS is required. The original NZS1170.5 (SNZ 2004) site subsoil classifications for each SMS site is based on regional geological information and well logs located at varying distances from the site. Given the variability of Christchurch soils, more detailed investigations are required in close vicinity to each SMS to better understand stratigraphy and soil properties, which are important in seismic site response. In this regard, CPT, SPT and borehole data, shear wave velocity (Vs) profiles, and horizontal to vertical spectral ratio measurements (H/V) in close vicinity to the SMS were used to develop representative soil profiles at each site. NZS1170.5 (SNZ 2004) site subsoil classifications were updated using Vs and SPT N60 criteria. Site class E boundaries were treated as a sliding scale rather than as a discrete boundary to account for locations with similar site effects potential, an approach which was shown to result in a better delineation between the site classes. SPT N60 values often indicate a stiffer site class than the Vs data for softer soil sites, highlighting the disparity between the two site investigation techniques. Both SPT N60 and Vs based site classes did not always agree with the original site classifications. This emphasises the importance of having detailed site‐specific information at SMS locations in order to properly classify them. Furthermore, additional studies are required to harmonize site classification based on SPT N60 and Vs. Liquefaction triggering assessments were carried out for the Darfield and Christchurch earthquakes, and compared against observed liquefaction surface manifestations and ground motions characteristics at each SMS. In general, the characteristics of the recorded ground motions at each site correlate well with the triggering analyses. However, at sites that likely liquefied at depth (as indicated by triggering analyses and/or inferred from the characteristics of the recorded surface acceleration time series), the presence of a non‐liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects.

Research papers, University of Canterbury Library

Recurrent liquefaction in Christchurch during the 2010-2011 Canterbury earthquake sequence created a wealth of shallow subsurface intrusions with geometries and orientations governed by (1) strong ground motion severity and duration, and (2) intrinsic site characteristics including liquefaction susceptibility, lateral spreading severity, geomorphic setting, host sediment heterogeneity, and anthropogenic soil modifications. We present a suite of case studies that demonstrate how each of these characteristics influenced the geologic expressions of contemporary liquefaction in the shallow subsurface. We compare contemporary features with paleo-features to show how geologic investigations of recurrent liquefaction can provide novel insights into the shaking characteristics of modern and paleo-earthquakes, the influence of geomorphology on liquefaction vulnerability, and the possible controls of anthropogenic activity on the geologic record. We conclude that (a) sites of paleo-liquefaction in the last 1000-2000 years corresponded with most severe liquefaction during the Canterbury earthquake sequence, (b) less vulnerable sites that only liquefied in the strongest and most proximal contemporary earthquakes are unlikely to have liquefied in the last 1000-2000 years or more, (c) proximal strong earthquakes with large vertical accelerations favoured sill formation at some locations, (d) contemporary liquefaction was more severe than paleoliquefaction at all study sites, and (e) stratigraphic records of successive dike formation were more complete at sites with severe lateral spreading, (f) anthropogenic fill suppressed surface liquefaction features and altered subsurface liquefaction architecture.

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.

Research papers, University of Canterbury Library

Recent field investigations were carried out to define the shear wave velocity (VS) profile and site periods across the Canterbury region, supplementing earlier efforts in urban Christchurch. Active source surface wave testing, ambient wave field (passive) and H/V spectral ratio methods were used to characterise the soil profile in the region. H/V spectral ratio peaks indicate site periods in the range of 5-7 seconds across much of the Canterbury Plains, broadly consistent with those based on a 1D velocity model for the region. Site periods decrease rapidly in the vicinity of the Canterbury foothills and the Banks Peninsula outcrops. In Christchurch, the Riccarton Gravels result in a significant mode of vibration that has a much shorter period than the site period of the entire soil column down to basement rock.

Research papers, University of Canterbury Library

This study uses 44 high quality liquefaction case histories taken from 22 locations affected by the 2010-2011 Canterbury earthquake sequence to evaluate four commonly used CPT-VS correlations (i.e., Robertson, 2009; Hegazy and Mayne, 2006; Andrus et al., 2007; McGann et al., 2015b). Co-located CPT soundings and VS profiles, developed from surface wave testing, were obtained at 22 locations and case histories were developed for the Mw 7.1, 4 September 2010 Darfield and Mw 6.2, 22 February 2011 Christchurch earthquakes. The CPT soundings are used to generate VS profiles using each of four CPT-VS correlations. These correlated VS profiles are used to estimate the factor of safety against liquefaction using the Kayen et al. (2013) VS-based simplified liquefaction evaluation procedure. An error index is used to quantify the predictive capabilities of these correlations in relation to the observations of liquefaction (or the lack thereof). Additionally, the error indices from the CPT-correlated VS profiles are compared to those obtained using: (1) the Kayen et al. (2013) procedure with surface wave-derived VS profiles, and (2) the Idriss and Boulanger (2008) CPT-based liquefaction evaluation procedure. Based on the error indices, the evaluation procedures based on direct measurements of either CPT or VS provided more accurate liquefaction triggering estimates than those obtained from any of the CPT-VS correlations. However, the performance of the CPT-VS correlations varied, with the Robertson (2009) and Hegazy and Mayne (2006) correlations performing relatively poorly for the Christchurch soils and the Andrus et al. (2007) and McGann et al. (2015b) correlations performing better. The McGann et al. (2015b) correlation had the lowest error indices of the CPT-VS correlations tested, however, none of the CPT-VS correlations provided accurate enough VS predictions to be used for the evaluation of liquefaction triggering using the VS-based liquefaction evaluation procedures.

Research papers, University of Canterbury Library

Motivation This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized.

Research papers, University of Canterbury Library

Results from cyclic undrained direct simple shear tests on reconstituted specimens of two sands from Christchurch are compared against the liquefaction resistance inferred from CPT-based empirical liquefaction triggering methods. Limitations in existing empirical triggering relationships to capture important effects related to processes which originated test soils are highlighted and discussed.

Research papers, University of Canterbury Library

The empirical liquefaction triggering chart of Idriss and Boulanger (2008) is compared to direct measurements of the cyclic resistance of Christchurch silty sands via undisturbed and reconstituted lab specimens. Comparisons suggest that overall there is a reasonable agreement between the empirical triggering curve and the interpreted test data. However, the influence of fines on cyclic resistance appears to be over-predicted by the empirical method, particularly for non-plastic silty sands that are commonly encountered in flood over-bank deposits in Christchurch and nearby settlements

Research papers, University of Canterbury Library

The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.