Search

found 452 results

Research papers, University of Canterbury Library

At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.

Research papers, University of Canterbury Library

The greater Wellington region, New Zealand, is highly vulnerable to large earthquakes. While attention has been paid to the consequences of earthquake damage to road, electricity and water supply networks, the consequences of wastewater network damage for public health, environmental health and habitability of homes remain largely unknown for Wellington City. The Canterbury and Kaikōura earthquakes have highlighted the vulnerability of sewerage systems to disruption during a disaster. Management of human waste is one of the critical components of disaster planning to reduce faecal-oral transmission of disease and exposure to disease-bearing vectors. In Canterbury and Kaikōura, emergency sanitation involved a combination of Port-a-loos, chemical toilets and backyard long-drops. While many lessons may be learned from experiences in Canterbury earthquakes, it is important to note that isolation is likely to be a much greater factor for Wellington households, compared to Christchurch, due to the potential for widespread landslides in hill suburbs affecting road access. This in turn implies that human waste may have to be managed onsite, as options such as chemical toilets and Port-a-loos rely completely on road access for delivering chemicals and collecting waste. While some progress has been made on options such as emergency composting toilets, significant knowledge gaps remain on how to safely manage waste onsite. In order to bridge these gaps, laboratory tests will be conducted through the second half of 2019 to assess the pathogen die-off rates in the composting toilet system with variables being the type of carbon bulking material and the addition of a Bokashi composting activator.

Research papers, University of Canterbury Library

Validation is an essential step to assess the applicability of simulated ground motions for utilization in engineering practice, and a comprehensive analysis should include both simple intensity measures (PGA, SA, etc), as well as the seismic response of a range of complex systems obtained by response history analysis. In order to enable a spectrum of complex structural systems to be considered in systematic validation of ground motion simulations in a routine fashion, an automated workflow was developed. Such a workflow enables validation of simulated ground motions in terms of different complex model responses by considering various ground motion sets and different ground motion simulation methods. The automated workflow converts the complex validation process into a routine one by providing a platform to perform the validation process promptly as a built-in process of simulation post-processing. As a case study, validation of simulated ground motions was investigated via the automated workflow by comparing the dynamic responses of three steel special moment frame (SMRF) subjected to the 40 observed and 40 simulated ground motions of 22 February 2011 Christchurch earthquake. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions can be used in code-based structural performance assessments in-place of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?

Research papers, University of Canterbury Library

Developing a holistic understanding of social, cultural, and economic impacts of disasters can help in building disaster risk knowledge for policy making and planning. Many methods can help in developing an understanding of the impacts of a disaster, including interviews and surveys with people who have experienced disaster, which may be invasive at times and create stress for the participants to relive their experiences. In the past decade, social media, blog posts, video blogs (i.e. “vlogs”), and crowdsourcing mechanisms such as Humanitarian OpenStreetMap and Ushahidi, have become prominent platforms for people to share their experiences and impacts of an event from the ground. These platforms allow for the discovery of a range of impact information, from physical impacts, to social, cultural, and psychological impacts. It can also reveal interesting behavioural information such as their decision to heed a warning or not, as people tend to share their experiences and their reactions online. This information can help researchers and authorities understand both the impacts as well as behavioural responses to hazards, which can then shape how early warning systems are designed and delivered. It can also help to identify gaps in desired behavioural responses. This poster presents a selection of cases identified from the literature and grey literature, such as the Haiti earthquake, the Christchurch earthquake, Hurricane Sandy, and Hurricane Harvey, where online platforms were widely used during and after a disaster to document impacts, experiences, and behavioural responses. A summary of key learnings and areas for future research is provided.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Research papers, University of Canterbury Library

The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.

Research papers, University of Canterbury Library

Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.

Research papers, University of Canterbury Library

Predicting building collapse due to seismic motion is critical in design and more so after a major event. Damaged structures can appear sound, but collapse under following major events. There can thus be significant risk in decision making after a major seismic event concerning the safe occupation of a building or surrounding areas, versus the unknown impact of unknown major aftershocks. Model-based pushover analyses are effective if the structural properties are well understood, which is not valid post-event when this risk information is most useful. This research combines Hysteresis Loop Analysis (HLA) structural health monitoring (SHM) and Incremental Dynamic Analysis (IDA) methods to determine collapse capacity and probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. The nonlinear dynamic analysis method presented enables constant updating of building performance predictions using post-event SHM results. The resulting combined methods provide near real-time updating of collapse fragility curves as events progress, quantifying the change of collapse probability or seismic induced losses for decision-making - a novel, higher resolution risk analysis than previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model. Results show significant potential benefits and a clear evolution of risk. They also show clear need for extending SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010-2011 had significant post-event aftershocks after each main event. Finally, the overall method is generalisable to any typical engineering demand parameter.

Research papers, University of Canterbury Library

It is reported that natural disasters such as earthquakes impact significantly upon survivors’ psychological wellbeing. Little is known however about the impact of disasters upon the professional performance of survivor employees such as teachers. Using a survey research design with an emphasis upon a qualitative data collection, 39 teachers from 6 schools in the eastern suburbs of Christchurch, New Zealand rated the impact of the 2010 and 2011 earthquakes upon their professional performance and 13 volunteered to participate in a follow up focus group interviews. The data collected was interpreted via three theoretical/policy frameworks: the New Zealand Teacher Council mandatory requirements for teachers, the basic psychological needs theory and the inclusive transactional model of stress. Contrary to expectations, relationships with learners, colleagues, learner's whanau (family) and the wider community were on the whole perceived to be positively impacted by the earthquakes, while participation in professional development was regarded in more negative terms. The results indicated that teachers were able to continue (despite some stress reactions) because the basic psychological needs of being a teacher were not disrupted and indeed in some cases were enhanced. A model of teacher performance following a natural disaster is presented. Recommendations and implications (including future research undertakings) arising from the study are indicated. It was noted that given the importance of the school in supporting community recovery following a disaster, support for them and consideration of the role of teachers and the preparation for this should be given some priority.

Research papers, University of Canterbury Library

Despite their good performance in terms of their design objectives, many modern code-prescriptive buildings built in Christchurch, New Zealand had to be razed after the 2010-2011 Canterbury earthquakes because repairs were deemed too costly due to widespread sacrificial damage. Clearly a more effective design paradigm is needed to create more resilient structures. Rocking, post-tensioned connections with supplemental energy dissipation can contribute to a damage avoidance designs (DAD). However, few have achieved all three key design objectives of damage-resistant rocking, inherent recentering ability, and repeatable, damage-free energy dissipation for all cycles, which together offer a response which is independent of loading history. Results of experimental tests are presented for a near full-scale rocking beam-column sub-assemblage. A matrix of test results is presented for the system under varying levels of posttensioning, with and without supplemental dampers. Importantly, this parametric study delineates each contribution to response. Practical limitations on posttensioning are identified: a minimum to ensure static structural re-centering, and a maximum to ensure deformability without threadbar yielding. Good agreement between a mechanistic model and experimental results over all parameters and inputs indicates the model is robust and accurate for design. The overall results indicate that it is possible to create a DAD connection where the non-linear force-deformation response is loading history independent and repeatable over numerous loading cycles, without damage, creating the opportunity for the design and implementation of highly resilient structures.

Research papers, University of Canterbury Library

At 00:02 on 14th November 2016, a Mw 7.8 earthquake occurred in and offshore of the northeast of the South Island of New Zealand. Fault rupture, ground shaking, liquefaction, and co-seismic landslides caused severe damage to distributed infrastructure, and particularly transportation networks; large segments of the country’s main highway, State Highway 1 (SH1), and the Main North Line (MNL) railway line, were damaged between Picton and Christchurch. The damage caused direct local impacts, including isolation of communities, and wider regional impacts, including disruption of supply chains. Adaptive measures have ensured immediate continued regional transport of goods and people. Air and sea transport increased quickly, both for emergency response and to ensure routine transport of goods. Road diversions have also allowed critical connections to remain operable. This effective response to regional transport challenges allowed Civil Defence Emergency Management to quickly prioritise access to isolated settlements, all of which had road access 23 days after the earthquake. However, 100 days after the earthquake, critical segments of SH1 and the MNL remain closed and their ongoing repairs are a serious national strategic, as well as local, concern. This paper presents the impacts on South Island transport infrastructure, and subsequent management through the emergency response and early recovery phases, during the first 100 days following the initial earthquake, and highlights lessons for transportation system resilience.

Research papers, University of Canterbury Library

At 00:02 on 14th November 2016, a Mw 7.8 earthquake occurred in and offshore of the northeast of the South Island of New Zealand. Fault rupture, ground shaking, liquefaction, and co-seismic landslides caused severe damage to distributed infrastructure, and particularly transportation networks; large segments of the country’s main highway, State Highway 1 (SH1), and the Main North Line (MNL) railway line, were damaged between Picton and Christchurch. The damage caused direct local impacts, including isolation of communities, and wider regional impacts, including disruption of supply chains. Adaptive measures have ensured immediate continued regional transport of goods and people. Air and sea transport increased quickly, both for emergency response and to ensure routine transport of goods. Road diversions have also allowed critical connections to remain operable. This effective response to regional transport challenges allowed Civil Defence Emergency Management to quickly prioritise access to isolated settlements, all of which had road access 23 days after the earthquake. However, 100 days after the earthquake, critical segments of SH1 and the MNL remain closed and their ongoing repairs are a serious national strategic, as well as local, concern. This paper presents the impacts on South Island transport infrastructure, and subsequent management through the emergency response and early recovery phases, during the first 100 days following the initial earthquake, and highlights lessons for transportation system resilience.

Research papers, University of Canterbury Library

Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.

Research papers, University of Canterbury Library

Background: Earthquakes are found to have lingering post-disaster effects on children that can be present for months or years after the disaster, including hyperarousal symptoms. Young children have the most difficulties in regulating their emotions, especially when they are highly aroused. Colouring-in mandala designs have been found to reduce hyperarousal symptoms of stress in young adults. The purpose of this study was to determine if the same effects of colouring-in mandalas would be seen with children showing signs of hyperarousal. Research Question: To identify what effect colouring-in mandala designs would have on the heart rate in a young child showing signs of hyperarousal. Method: Following approved procedures for informed consent, two 6-year-old girls from a Christchurch primary school were chosen for the study. Heart rate was measured using a Fitbit in a single subject design. The baseline, colouring-in and a second baseline phase were conducted during mathematics. The participants and their teacher reported on arousal, enjoyment, and positive and problem behaviours. The study took 26 school days to complete. Results: Compared with baseline, the average heart rate data showed no decrease in heart rate (i.e., calming effect) during the mandala colouring-in task phase. Conclusions: The participants enjoyed colouring-in the mandalas, but the average heart rate data did not show that colouring-in pre-drawn designs reduced heart rate, a measure of arousal. Major study limitations included; not having suitable participants or a suitable setting for the colouring-in task, and not being able to observe both participants.

Research papers, University of Canterbury Library

Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.

Research papers, University of Canterbury Library

Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.

Research papers, University of Canterbury Library

Pumice materials, which are problematic from an engineering viewpoint, are widespread in the central part of the North Island. Considering the impacts of the 2010-2011 Christchurch earthquakes, a clear understanding of their properties under earthquake loading is necessary. For example, the 1987 Edgecumbe earthquake showed evidence of localised liquefaction of sands of volcanic origin. To elucidate on this, research was undertaken to investigate whether existing empirical field-based methods to evaluate the liquefaction potential of sands, which were originally developed for hard-grained soils, are applicable to crushable pumice-rich deposits. For this purpose, two sites, one in Whakatane and another in Edgecumbe, were selected where the occurrence of liquefaction was reported following the Edgecumbe earthquake. Manifestations of soil liquefaction, such as sand boils and ejected materials, have been reported at both sites. Field tests, including cone penetration tests (CPT), shear-wave velocity profiling, and screw driving sounding (SDS) tests were performed at the sites. Then, considering estimated peak ground accelerations (PGAs) at the sites based on recorded motions and possible range of ground water table locations, liquefaction analysis was conducted at the sites using available empirical approaches. To clarify the results of the analysis, undisturbed soil samples were obtained at both sites to investigate the laboratory-derived cyclic resistance ratios and to compare with the field-estimated values. Research results clearly showed that these pumice-rich soils do not fit existing liquefaction assessment frameworks and alternate methods are necessary to characterise them.

Research papers, University of Canterbury Library

This chapter will draw on recent literature and practice experience to discuss the nature of field education in Aotearoa New Zealand. Social work education in this country is provided by academic institutions that are approved by the Social Workers Registration Board. The field education curriculum is therefore shaped by both the regulatory body and the tertiary institutions. Significant numbers of students undertake field education annually which places pressure on industry and raises concerns as to the quality of student experience. Although the importance of field education is undisputed it remains poised in a liminal space between the tertiary education and social service sectors where it is not sufficiently resourced by either. This affects the provision of practice placements as well as the establishment of long-term cross-sector partnerships. Significant events such as the 2010 and 2011 Christchurch earthquakes and recent terrorist attacks have exposed students to different field education experiences signalling the need for programmes to be responsive. Examples of creative learning opportunities in diverse environments, including in indigenous contexts, will be described. Drawing upon recent research, we comment on student and field educator experiences of supervision in the field. Recommendations to further develop social work field education in Aotearoa New Zealand relate to resourcing, infrastructure and quality, support for field educators, and assessment.

Research papers, University of Canterbury Library

Rapid, accurate structural health monitoring (SHM) assesses damage to optimise decision-making. Many SHM methods are designed to track nonlinear stiffness changes as damage. However, highly nonlinear pinched hysteretic systems are problematic in SHM. Model-based SHM often fails as any mismatch between model and measured response dynamics leads to significant error. Thus, modelfree methods of hysteresis loop tracking methods have emerged. This study compares the robustness and accuracy in the presence of significant measurement noise of the proven hysteresis loop analysis (HLA) SHM method with 3 emerging model-free methods and 2 further novel adaptations of these methods using a highly nonlinear, 6-story numerical structure to provide a known ground-truth. Mean absolute errors in identifying a known nonlinear stiffness trajectory assessed at four points over two successive ground motion inputs from September 2010 and February 2011 in Christchurch range from 1.71-10.52%. However, the variability is far wider with maximum errors ranging from 3.90-49.72%, where the second largest maximum absolute error was still 19.74%. The lowest mean and maximum absolute errors were for the HLA method. The next best method had mean absolute error of 2.92% and a maximum of 10.51%. These results show the clear superiority of the HLA method over all current emerging model-free methods designed to manage the highly nonlinear pinching responses common in reinforced concrete structures. These results, combined with high robustness and accuracy in scaled and fullscale experimental studies, provide further validation for using HLA for practical implementation.

Research papers, University of Canterbury Library

Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.

Research papers, University of Canterbury Library

With origins in the South Bronx area of New York in the early 1970s, hip-hop culture is now produced and consumed globally. While hip-hop activities can be varied, hip-hop is generally considered to have four forms or “elements”: DJing, MCing, b-boying/b-girling, and graffiti. Although all four elements of hip-hop have become a part of many youth work initiatives across the globe, public debate and controversy continue to surround hip-hop activities. Very little research and literature has explored the complexities involved in the assembling of hip-hop activities in youth work sites of practice using these hip-hop elements. This study attends to the gap in hip-hop and human service literature by tracing how hip-hop activities were assembled in several sites of youth work activity in Christchurch, New Zealand. Actor-network theory (ANT) is the methodological framework used to map the assemblage of hip-hop-youth work activities in this study. ANT follows how action is distributed across both human and non-human actors. By recognising the potential agency of “things”, this research traces the roles played by human actors, such as young people and youth workers, together with those of non-human actors such as funding documents, social media, clothing, and youth venue equipment. This ethnographic study provides rich descriptions or “snapshots” of some of the key socio-material practices that shaped the enactment of hip-hop-youth work activities. These are derived from fieldwork undertaken between October 2009 and December 2011, where participant observation took place across a range of sites of hip-hop-youth work activity. In addition to this fieldwork, formal interviews were undertaken with 22 participants, the majority being youth workers, young people, and youth trust administrators. The ANT framework reveals the complexity of the task of assembling hip-hop in youth work worlds. The thesis traces the work undertaken by both human and non-human actors in generating youth engagement in hip-hop-youth work activities. Young people’s hip-hop interests are shown to be varied, multiple, and continually evolving. It is also shown how generating youth interest in hip-hop-youth work activities involved overcoming young people’s indifference or lack of awareness of the hip-hop resources a youth trust had on offer. Furthermore, the study highlights where hip-hop activities were edited or “tinkered” with to avoid hip-hop “bads”. The thesis also unpacks how needed resources were enlisted, and how funders’ interests were translated into supporting hip-hop groups and activities. By tracing the range of actors mobilised to enact hip-hop-youth work activities, this research reveals how some youth trusts could avoid having to rely on obtaining government funds for their hip-hop activities. The thesis also includes an examination of one youth trust’s efforts to reconfigure its hip-hop activities after the earthquakes that struck Christchurch city in 2010 and 2011. Working both in and on the world, the text that is this thesis is also understood as an intervention. This study constitutes a deliberate attempt to strengthen understandings of hip-hop as a complex, multiple, and fluid entity. It therefore challenges traditional media and literature representations that simplify and thus either stigmatise or celebrate hip-hop. As such, this study opens up possibilities to consider the opportunities, as well as the complexities of assembling hip-hop in youth work sites of practice.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.

Research papers, University of Canterbury Library

The research is funded by Callaghan Innovation (grant number MAIN1901/PROP-69059-FELLOW-MAIN) and the Ministry of Transport New Zealand in partnership with Mainfreight Limited. Need – The freight industry is facing challenges related to climate change, including natural hazards and carbon emissions. These challenges impact the efficiency of freight networks, increase costs, and negatively affect delivery times. To address these challenges, freight logistics modelling should consider multiple variables, such as natural hazards, sustainability, and emission reduction strategies. Freight operations are complex, involving various factors that contribute to randomness, such as the volume of freight being transported, the location of customers, and truck routes. Conventional methods have limitations in simulating a large number of variables. Hence, there is a need to develop a method that can incorporate multiple variables and support freight sustainable development. Method - A minimal viable model (MVM) method was proposed to elicit tacit information from industrial clients for building a minimally sufficient simulation model at the early modelling stages. The discrete-event simulation (DES) method was applied using Arena® software to create simulation models for the Auckland and Christchurch corridor, including regional pick-up and delivery (PUD) models, Christchurch city delivery models, and linehaul models. Stochastic variables in freight operations such as consignment attributes, customer locations, and truck routes were incorporated in the simulation. The geographic information system (GIS) software ArcGIS Pro® was used to identify and analyse industrial data. The results obtained from the GIS software were applied to create DES models. Life cycle assessment (LCA) models were developed for both diesel and battery electric (BE) trucks to compare their life cycle greenhouse gas (GHG) emissions and total cost of ownership (TCO) and support GHG emissions reduction. The line-haul model also included natural hazards in several scenarios, and the simulation was used to forecast the stock level of Auckland and Christchurch depots in response to each corresponding scenario. Results – DES is a powerful technique that can be employed to simulate and evaluate freight operations that exhibit high levels of variability, such as regional pickup and delivery (PUD) and linehaul. Through DES, it becomes possible to analyse multiple factors within freight operations, including transportation modes, routes, scheduling, and processing times, thereby offering valuable insights into the performance, efficiency, and reliability of the system. In addition, GIS is a useful tool for analysing and visualizing spatial data in freight operations. This is exemplified by their ability to simulate the travelling salesman problem (TSP) and conduct cluster analysis. Consequently, the integration of GIS into DES modelling is essential for improving the accuracy and reliability of freight operations analysis. The outcomes of the simulation were utilised to evaluate the ecological impact of freight transport by performing emission calculations and generating low-carbon scenarios to identify approaches for reducing the carbon footprint. LCA models were developed based on simulation results. Results showed that battery-electric trucks (BE) produced more greenhouse gas (GHG) emissions in the cradle phase due to battery manufacturing but substantially less GHG emissions in the use phase because of New Zealand's mostly renewable energy sources. While the transition to BE could significantly reduce emissions, the financial aspect is not compelling, as the total cost of ownership (TCO) for the BE truck was about the same for ten years, despite a higher capital investment for the BE. Moreover, external incentives are necessary to justify a shift to BE trucks. By using simulation methods, the effectiveness of response plans for natural hazards can be evaluated, and the system's vulnerabilities can be identified and mitigated to minimize the risk of disruption. Simulation models can also be utilized to simulate adaptation plans to enhance the system's resilience to natural disasters. Novel contributions – The study employed a combination of DES and GIS methods to incorporate a large number of stochastic variables and driver’s decisions into freight logistics modelling. Various realistic operational scenarios were simulated, including customer clustering and PUD truck allocation. This showed that complex pickup and delivery routes with high daily variability can be represented using a model of roads and intersections. Geographic regions of high customer density, along with high daily variability could be represented by a two-tier architecture. The method could also identify delivery runs for a whole city, which has potential usefulness in market expansion to new territories. In addition, a model was developed to address carbon emissions and total cost of ownership of battery electric trucks. This showed that the transition was not straightforward because the economics were not compelling, and that policy interventions – a variety were suggested - could be necessary to encourage the transition to decarbonised freight transport. A model was developed to represent the effect of natural disasters – such as earthquake and climate change – on road travel and detour times in the line haul freight context for New Zealand. From this it was possible to predict the effects on stock levels for a variety of disruption scenarios (ferry interruption, road detours). Results indicated that some centres rather than others may face higher pressure and longer-term disturbance after the disaster subsided. Remedies including coastal shipping were modelled and shown to have the potential to limit the adverse effects. A philosophical contribution was the development of a methodology to adapt the agile method into the modelling process. This has the potential to improve the clarification of client objectives and the validity of the resulting model.

Research papers, University of Canterbury Library

The context of this study is the increasing need for public transport as issues over high private vehicle usage are becoming increasingly obvious. Public transport services need to compete with private transport to improve patronage, and issues with reliability need to be addressed. Bus bunching affects reliability through disruptions to the scheduled headways. The purpose of this study was to collect and analyse data to compare how travel time and dwell time vary, to explore the variation of key variables, and to better understand the sources of these variations. The Orbiter bus service in Christchurch was used as a case study, as it is particularly vulnerable to bus bunching. The dwell time was found to be more variable than travel time. It appeared the Canterbury earthquake had significantly reduced the average speeds for the Orbiter service. In 1964, Newell and Potts described a basic bus bunching theory, which was used as the basis for an Excel bus bunching model. This model allows input variables to vary stochastically. Random values were generated from four specified distributions derived from manually collected data, allowing variance across all bus platforms and buses. However the complexity resulted in stability and difficulty in achieving convergence, so the model was run in single Monte Carlo simulations. The outputs were realistic and showed a higher degree of bunching behaviour than previous models. The model demonstrated bunching phenomena that had not been observed in previous models, including spontaneously un-pairing, overtaking of buses delayed at platforms, and odd-numbered bunches of three buses. Furthermore, the study identified areas of further research for data collection and model development.

Research papers, University of Canterbury Library

Tsunami events including the 2004 Indian Ocean Tsunami and the 2011 Tohoku Earthquake and Tsunami confirmed the need for Pacific-wide comprehensive risk mitigation and effective tsunami evacuation planning. New Zealand is highly exposed to tsunamis and continues to invest in tsunami risk awareness, readiness and response across the emergency management and science sectors. Evacuation is a vital risk reduction strategy for preventing tsunami casualties. Understanding how people respond to warnings and natural cues is an important element to improving evacuation modelling techniques. The relative rarity of tsunami events locally in Canterbury and also globally, means there is limited knowledge on tsunami evacuation behaviour, and tsunami evacuation planning has been largely informed by hurricane evacuations. This research aims to address this gap by analysing evacuation behaviour and movements of Kaikōura and Southshore/New Brighton (coastal suburb of Christchurch) residents following the 2016 Kaikōura earthquake. Stage 1 of the research is engaging with both these communities and relevant hazard management agencies, using a survey and community workshops to understand real-event evacuation behaviour during the 2016 Kaikōura earthquake and subsequent tsunami evacuations. The second stage is using the findings from stage 1 to inform an agent-based tsunami evacuation model, which is an approach that simulates of the movement of people during an evacuation response. This method improves on other evacuation modelling approaches to estimate evacuation times due to better representation of local population characteristics. The information provided by the communities will inform rules and interactions such as traffic congestion, evacuation delay times and routes taken to develop realistic tsunami evacuation models. This will allow emergency managers to more effectively prepare communities for future tsunami events, and will highlight recommended actions to increase the safety and efficiency of future tsunami evacuations.

Research papers, University of Canterbury Library

The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.

Research papers, University of Canterbury Library

By closely examining the performance of a 22-storey steel framed building in Christchurch subject to various earthquakes over the past seven years, it is shown that a number of lessons can be learnt regarding the cost-effective consideration of non-structural elements. The first point in this work is that non-structural elements significantly affected the costs associated with repairing steel eccentrically braced frame (EBF) links. The decommissioning or rerouting of non-structural elements in the vicinity of damaged links in the case study building attributed to approximately half the total cost of their repair. Such costs could be significantly reduced if the original positioning of non-structural elements took account of the potential need to repair the EBF links. The second point highlighted is the role that pre-cast cladding apparently played on the distribution and type of damage in the building. Loss estimates obtained following the FEMA P-58 framework vary considerably when cladding is or isnt modelled, both because of changes to drift demands up the height of the building and because certain types of subsequent damage are likely to be cheaper to repair than others. Finally, costly repairs to non-structural partition walls were required not only after the moment magnitude 7.1 earthquake in 2010 but also in multiple aftershocks in the years that followed. Repair costs associated with aftershock events exceeded those from the main event, emphasizing the need to consider aftershocks within modern performance-based earthquake engineering and also the opportunity that exists to make more cost-effective repair strategies following damaging earthquakes.

Research papers, University of Canterbury Library

Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.