Tents of the "Occupy" movement's encampment in Hagley Park.
Notices advertising working groups in the "Occupy" movement's encampment in Hagley Park.
Photograph captioned by Fairfax, "Volcano holes. Small volcano-shaped mounds indicate the force of water being pushed out by the earth's movement".
A large crack between the road and a concrete slab in New Brighton. The photographer comments, "This is the gap that has been growing during all the Christchurch earthquakes. It is between Robbie's Restaurant and the car park in New Brighton".
A banner in the "Occupy" movement's encampment in Hagley Park. The banner reads, "Co-operation not corporation. Join us, 11 am Monday, right here".
A person takes a photograph during the Rally for the Cathedral in Cranmer Square. He is wearing a mask identified with the "Anonymous" movement. The rally protested the proposed demolition of the ChristChurch Cathedral.
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building. Pencil lines mark the latest movement".
A large crack where the foundation of a building has moved away from the adjoining carpark. The photographer comments, "The gap between Robbies restaurant and bar in New Brighton and the car park after the Christchurch Earthquake".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse. Movement around Dallington Terrace was varied. The Medway Street footbridge from River Road to Avonside Drive".
Liquefaction and buckled tarmac on a residential street in North New Brighton. The photographer comments, "In the February 2011 earthquake in Christchurch the kerb at the end of my road was pushed from both ends. This caused it to move away from the grass verge and push itself under the tarmac. The tarmac would normally have been 3 inches below the top of the kerb. Between the kerb and the grass can be seen the colour of the liquefaction that spewed out from the ground. The tarmac in the area seemed to flow downhill".
A video capturing an aftershock from the Canterbury earthquake on 22 February 2011, 1:04pm. After the 6.3 magnitude earthquake at 12:51pm, Ben Post set up his camera on a tripod and left it running. The movement of the water in the fish tank during the quake suggests that the shaking is up and down. The camera also shows this effect; due to the lightweight material of the tripod, the camera is shaken about more than the surroundings.
A wooden house in Wainoni has visibly bowed inwards towards its centre. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. In a line parallel to the road the road, but around 20m away a ground movement occurred which caused some houses to rise up or sink down".
A motion-blurred photograph of houses, with the Port Hills in the background. The photographer comments, "This I hope gives you a feel of what it feels like in an earthquake. When you spend your whole life thinking that you and your home are built on solid ground, it can be quite a shock when you find it is not. You can feel the house shaking like a dog with a toy, rising up violently underneath you or the most gentle form which is when the ground moves gently like a wave moving under a rowing boat. It is not just the movement, you often get a rumbling sound which can precede a violent shake or can result in no movement at all. This means that some vehicles can sound like the rumbling initially and in the early days would get your heart racing. Another form of stress is when big excavators as heavy as a tank move as you can feel the ground shake from streets away, but you do not always hear the engine. For most of us the problem when the shaking starts, is wondering if this is the start of an extremely violent earthquake or will it peter out".
A video of a press conference with Earthquake Recovery Minister Gerry Brownlee and Mayor Lianne Dalziel. The conference was held to announce the implementation of the Accessible Transport Plan. Brownlee announces the introduction of a 30 km/h speed limit in the inner city zone, facilitating the use of bicycles and encouraging pedestrian movement within the centre city. Lianne also talks about how the plan allows for a clean, green, safe, and accessible city, reflecting the public's visions in the Share an Idea campaign.
This report provided information on the location and character of the Ostler Fault Zone near Twizel. The fault traces, and associated recommended fault avoidance zones, were mapped in detail for inclusion in a District Plan Change for the Twizel area. The Ostler Fault Zone was mapped in detail because of the higher likelihood of movement on that fault than others in the district, and the potential for future development across the fault zone because of its proximity to Twizel. See Object Overview for background and usage information. The report recommended that the information be incorporated into the District Plan Change and that site-specific investigations be undertaken before development is allowed within the fault avoidance zones. These recommendations were taken up by Mackenzie District Council.
This report provides information on the locations and character of active geological faults and folds in Ashburton District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of permanent fault movement at the ground surface, and where more detailed investigations should be done if development is proposed in that area (depending on the potential activity of the fault and the type of development proposed). See Object Overview for background and usage information. Most of the faults and folds identified at the ground surface in Ashburton District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region.
This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.