Following the devastating 1931 Hawke's Bay earthquake, buildings in Napier and surrounding areas in the Hawke's Bay region were rebuilt in a comparatively homogenous structural and architectural style comprising the region's famous Art Deco stock. These interwar buildings are most often composed of reinforced concrete two-way space frames, and although they have comparatively ductile detailing for their date of construction, are often expected to be brittle, earthquake-prone buildings in preliminary seismic assessments. Furthermore, the likelihood of global collapse of an RC building during a design-level earthquake became an issue warranting particular attention following the collapse of multiple RC buildings in the February 22, 2011 Christchurch earthquake. Those who value the architectural heritage and future use of these iconic Art Deco buildings - including building owners, tenants, and city officials, among others - must consider how they can be best preserved and utilized functionally given the especially pressing implications of relevant safety, regulatory, and economic factors. This study was intended to provide information on the seismic hazard, geometric weaknesses, collapse hazards, material properties, structural detailing, empirically based vulnerability, and recommended analysis approaches particular to Art Deco buildings in Hawke's Bay as a resource for professional structural engineers tasked with seismic assessments and retrofit designs for these buildings. The observed satisfactory performance of similar low-rise, ostensibly brittle RC buildings in other earthquakes and the examination of the structural redundancy and expected column drift capacities in these buildings, led to the conclusion that the seismic capacity of these buildings is generally underrated in simple, force-based assessments.
As a result of the 4 September 2010 Darfield earthquake and the more damaging 22 February 2011 Christchurch earthquake, considerable damage occurred to a significant number of buildings in Christchurch. The damage that occurred to the Christchurch Roman Catholic Cathedral of the Blessed Sacrament (commonly known as the Christchurch Basilica) as a result of the Canterbury earthquakes is reported, and the observed failure modes are identified. A previous strengthening intervention is outlined and the estimated capacity of the building is discussed. This strengthening was completed in 2004, and addressed the worst aspects of the building's seismic vulnerability. Urgent work was undertaken post-earthquake to secure parts of the building in order to limit damage and prevent collapse of unstable parts of the building. The approach taken for this securing is outlined, and the performance of the building and the previously installed earthquake strengthening intervention is evaluated.A key consideration throughout the project was the interaction between the structural securing requirements that were driven by the requirement to limit damage and mitigate hazards, and the heritage considerations. Lessons learnt from the strengthening that was carried out, the securing work undertaken, and the approach taken in making the building "safe" are discussed. Some conclusions are drawn with respect to the effectiveness of strengthening similar building types, and the approach taken to secure the building under active seismic conditions. AM - Accepted Manuscript
The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record
The Global Earthquake Model’s (GEM) Earthquake Consequences Database (GEMECD) aims to develop, for the first time, a standardised framework for collecting and collating geocoded consequence data induced by primary and secondary seismic hazards to different types of buildings, critical facilities, infrastructure and population, and relate this data to estimated ground motion intensity via the USGS ShakeMap Atlas. New Zealand is a partner of the GEMECD consortium and to-date has contributed with 7 events to the database, of which 4 are localised in the South Pacific area (Newcastle 1989; Luzon 1990; South of Java 2006 and Samoa Islands 2009) and 3 are NZ-specific events (Edgecumbe 1987; Darfield 2010 and Christchurch 2011). This contribution to GEMECD represented a unique opportunity for collating, comparing and reviewing existing damage datasets and harmonising them into a common, openly accessible and standardised database, from where the seismic performance of New Zealand buildings can be comparatively assessed. This paper firstly provides an overview of the GEMECD database structure, including taxonomies and guidelines to collect and report on earthquake-induced consequence data. Secondly, the paper presents a summary of the studies implemented for the 7 events, with particular focus on the Darfield (2010) and Christchurch (2011) earthquakes. Finally, examples of specific outcomes and potentials for NZ from using and processing GEMECD are presented, including: 1) the rationale for adopting the GEM taxonomy in NZ and any need for introducing NZ-specific attributes; 2) a complete overview of the building typological distribution in the Christchurch CBD prior to the Canterbury earthquakes and 3) some initial correlations between the level and extent of earthquake-induced physical damage to buildings, building safety/accessibility issues and the induced human casualties.
As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/
The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.
Recent earthquakes have shown that liquefaction and associated ground deformations are major geotechnical hazards to civil engineering infrastructures, such as pipelines. In particular, sewer pipes have been damaged in many areas in Christchurch as a result of liquefaction-induced lateral spreading near waterways and ground oscillation induced by seismic shaking. In this paper, the addition of a flexible AM liner as a potential countermeasure to increase sewer pipe capacity was investigated. Physical testing through 4-point loading test was undertaken to characterise material properties and the response of both unlined pipe and its lined counterpart. Next, numerical models were created using SAP2000 and ABAQUS to analyse buried pipeline response to transverse permanent ground displacement and to quantify, over a range of pipe segment lengths and soil parameters, the effectiveness of the AM liner in increasing displacement capacity. The numerical results suggest that the addition of the AM liner increases the deformation capacity of the unlined sewer pipe by as much as 50 times. The results confirmed that AM liner is an effective countermeasure for sewer pipes in liquefied ground not only in terms of increased deformation capacity but also the fact that AM-Liner can prevent influx of sand and water through broken pipes, making sewer pipes with liner remaining serviceable even under severe liquefaction condition.
There is very little research on total house strength that includes contributions of non-structural elements. This testing programme provides inclusive stiffness and response data for five houses of varying ages. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and/or stiffness, and to identify damage thresholds. Dynamic characteristics including natural periods, which ranged from 0.14 to 0.29s were also investigated. Two houses were quasi-statically loaded up to approximately 130kN above the foundation in one direction. Another unidirectional test was undertaken on a slab-on-grade two-storey house, which was also snapback tested. Two other houses were tested using cyclic quasi-static loading, and between cycles snapback tests were undertaken to identify the natural period of each house, including foundation and damage effects. A more detailed dynamic analysis on one of the houses provided important information on seismic safety levels of post-quake houses with respect to different hazard levels in the Christchurch area. While compared to New Zealand Building Standards all tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. http://www.aees.org.au/downloads/conference-papers/2015-2/
As part of the ‘Project Masonry’ Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. Also, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake. In addition to presenting a summary of Project Masonry, the broader research activity at the University of Auckland pertaining to the seismic assessment and improvement of unreinforced masonry buildings is outlined. The purpose of this outline is to provide an overview and bibliography of published literature and to communicate on-going research activity that has not yet been reported in a complete form. http://sesoc.org.nz/conference/programme.pdf