Search

found 3 results

Research papers, The University of Auckland Library

Following a damaging earthquake, the immediate emergency response is focused on individual collapsed buildings or other "hotspots" rather than the overall state of damage. This lack of attention to the global damage condition of the affected region can lead to the reporting of misinformation and generate confusion, causing difficulties when attempting to determine the level of postdisaster resources required. A pre-planned building damage survey based on the transect method is recommended as a simple tool to generate an estimate of the overall level of building damage in a city or region. A methodology for such a transect survey is suggested, and an example of a similar survey conducted in Christchurch, New Zealand, following the 22 February 2011 earthquake is presented. The transect was found to give suitably accurate estimates of building damage at a time when information was keenly sought by government authorities and the general public. VoR - Version of Record

Research papers, The University of Auckland Library

The seismic performance of soil profiles with potentially liquefiable deposits is a complex phenomenon that requires a thorough understanding of the soil properties and ground motion characteristics. The limitations of simplified liquefaction assessment methods have prompted an increase in the use of non-linear dynamic analysis methods. Focusing on onedimensional site response of a soil column, this thesis validated a soil constitutive model using in-situ pore pressure measurements and then assessed the influence of input ground motion characteristics on soil column response using traditional and newly developed metrics. Pore pressure recordings during the Canterbury Earthquake Sequence (CES) in New Zealand were used to validate the PM4Sand constitutive model. Soil profile characterization was key to accurate prediction of excess pore pressure response and accounting for any densification during the CES. Response during multiple earthquakes was captured effectively and cross-layer interaction demonstrated the model capability to capture soil response at the system-level. Synthetic and observed ground motions from the Christchurch earthquake were applied to the validated soil column to quantify the performance of synthetic motions. New metrics were developed to facilitate a robust comparison to assess performance. The synthetic input motions demonstrated a slightly larger acceleration and excess pore pressure response compared to the observed input motions. The results suggest that the synthetic motions may accumulate higher excess pore pressure at a faster rate and with fewer number of cycles in the shear response. This research compares validated soil profile subject to spectrally-matched pulse and non-pulse motions, emphasizing the inclusion of pulse motions with distinctive characteristics in ground motion suites for non-linear dynamic analysis. However, spectral matching may lead to undesired alterations in pulse characteristics. Cumulative absolute velocity and significant duration significantly differed between these two groups compared to the other key characteristics and contributed considerably to the liquefaction response. Unlike the non-pulse motions, not all of the pulse motions triggered liquefaction, likely due to their shorter significant duration. Non-pulse motions developed a greater spatial extent of liquefaction triggering in the soil profile and extended to a greater depth.

Research papers, The University of Auckland Library

This study is a qualitative investigation into the decision-making behaviour of commercial property owners (investors and developers) who are rebuilding in a city centre after a major disaster. In 2010/2011, Christchurch, the largest city in the South Island of New Zealand, was a site of numerous earthquakes. The stronger earthquakes destroyed many buildings and public infrastructure in the commercial inner city. As a result, affected property owners lost all or most of their buildings, a significant proportion of which were old and in the last phase of their life span. They had to negotiate pay-outs with insurance companies and decide, once paid out, whether they should rebuild in Christchurch or sell up and invest elsewhere. The clear majority of those who decided to reinvest in and rebuild the city are ‘locals’, almost all of whom had no prior experience of property development. Thus, in a post-disaster environment, most of these property owners have transitioned from being just being passive investors to active property developers. Their experience was interpreted using primary data gathered from in-depth and semi-structured interviews with twenty-one “informed property people” who included commercial property owners; property agents or consultants; representatives of public-sector agencies and financial institutions. The study findings showed that the decision-making behaviour of property investors and developers rebuilding after a major disaster did not necessarily follow a strict financial or profit motive as prescribed in the mainstream or neo-classical economics property literature. Rather, their decision-making behaviour has been largely shaped by emotional connections and external factors associated with their immediate environment. The theoretical proposition emerging from this study is that after a major disaster, local urban property owners are faced with two choices “to stay” or “to go”. Those who decide to stay and rebuild are typically very committed individuals who have a feeling of ownership, belonging and attachment to the city in which they live and work. These are people who will often take the lead in commercial property development, proactively making decisions and seeking positive investment outcomes for themselves which in turn result in revitalised commercial urban precincts.