Search

found 2 results

Research papers, The University of Auckland Library

The susceptibility of precast hollow-core floors to sustain critical damage during an earthquake is now well-recognized throughout the structural engineering community in New Zealand. The lack of shear reinforcement in these floor units is one of the primary reasons causing issues with the seismic performance of these floors. Recent research has revealed that the unreinforced webs of these floor units can crack at drift demands as low as 0.6%. Such observation indicates that potentially many of the existing building stock incorporating hollow-core flooring systems in cities of relatively high seismic activity (e.g. Wellington and Christchurch) that probably have already experienced a level of shaking higher than 0.6% drift in previous earthquakes might already have their floor units cracked. However, there is little information available to reliably quantify the residual gravity load-carrying capacity of cracked hollow-core floor units, highlighting the need to understand the post-cracking behavior of hollow-core floor units to better quantify the extent of the risk that cracked hollow-core floor units pose.

Research papers, The University of Auckland Library

In the aftermath of the 2010-2011 Canterbury earthquakes in New Zealand, the residual capacity and reparability of damaged reinforced concrete (RC) structures was an issue pertinent to building owners, insurers, and structural engineers. Three precast RC moment-resisting frame specimens were extracted during the demolition of the Clarendon Tower in Christchurch after sustaining earthquake damage. These specimens were subjected to quasi-static cyclic testing as part of a research program to determine the reparability of the building. It was concluded that the precast RC frames were able to be repaired and retrofitted to an enhanced strength capacity with no observed reduction in displacement capacity, although the frames with “shear-ductile” detailing exhibited less displacement ductility capacity and energy dissipation capacity than the more conventionally detailed RC frames. Furthermore, the cyclic test results from the earthquake-damaged RC frames were used to verify the predicted inelastic demands applied to the specimens during the 2010-2011 Canterbury earthquakes. https://www.concrete.org/publications/acistructuraljournal.aspx