Search

found 5 results

Research Papers, Lincoln University

On September the 4th 2010 and February 22nd 2011 the Canterbury region of New Zealand was shaken by two massive earthquakes. This paper is set broadly within the civil defence and emergency management literature and informed by recent work on community participation and social capital in the building of resilient cities. Work in this area indicates a need to recognise both the formal institutional response to the earthquakes as well as the substantive role communities play in their own recovery. The range of factors that facilitate or hinder community involvement also needs to be better understood. This paper interrogates the assumption that recovery agencies and officials are both willing and able to engage communities who are themselves willing and able to be engaged in accordance with recovery best practice. Case studies of three community groups – CanCERN, Greening the Rubble and Gap Filler – illustrate some of the difficulties associated with becoming a community during the disaster recovery phase. Based on my own observations and experiences, combined with data from approximately 50 in-depth interviews with Christchurch residents and representatives from community groups, the Christchurch City Council, the Earthquake Commission and so on, this paper outlines some practical strategies emerging communities may use in the early disaster recovery phase that then strengthens their ability to ‘participate’ in the recovery process.

Research Papers, Lincoln University

Earthquakes and other major disasters present communities and their authorities with an extraordinary challenge. While a lot can be done to prepare a city’s response in the event of a disaster, few cities are truly prepared for the initial impact, devastation, grief, and the seemingly formidable challenge of recovery. Many people find themselves overwhelmed with facing critical problems; ones which they have often never had experience with before. While the simple part is agreeing on a desired outcome for recovery, it appears the argument that exists between stakeholders is the conflicting ideas of How To effectively achieve the main objective. What I have identified as an important step toward collaborating on the How To of recovery is to identify the ways in which each discipline can most effectively contribute to the recovery. Landscape architecture is just one of the many disciplines (that should be) invovled in the How To of earthquake recovery. Canterbury has an incredible opportunity to set the benchmark for good practice in earthquake recovery. To make the most of this opportuntiy, it is critical that landscape architects are more effectively engaged in roles of recovery across a much broader spectrum of recovery activities. The overarching purpose of this research is to explore and provide insight to the current and potential of landscape architects in the earthquake recovery period in Canterbury, using international good practice as a benchmark. The research is aimed at stimulating and guiding landscape architects dealing with the earthquake recovery in Canterbury, while informing stakeholders: emergency managers, authorities, other disciplines and the wider community of themost effective role(s) for landscape architects in the recovery period.

Research Papers, Lincoln University

The world experiences a number of disasters each year. Following a disaster, the affected area moves to a phase of recovery which involves multiple stakeholders. An important element of recovery is planning the rebuild of the affected environment guided by the legislative framework to which planning is bound to (March & Kornakova, 2017). Yet, there appears to be little research that has investigated the role of planners in a recovery setting and the implications of recovery legislative planning frameworks. This study was conducted to explore the role of the planner in the Canterbury earthquake recovery process in New Zealand and the impact of the Canterbury Earthquake Recovery Act 2011 (CER Act) on planners’ roles and how they operated. The methodology comprised a combination of document analysis of legislation and related recovery material and 21 semi-structured interviews with key planners, politicians and professionals involved in the recovery. The results suggest that the majority of planners interviewed were affected by the CER Act in their role and how they operated, although institutional context, especially political constraints, was a key factor in determining the degree of impact. It is argued that planners played a key role in recovery and were generally equipped in terms of skills needed in a recovery setting. In order to better utilise planners in post-disaster recovery or disaster risk management, two suggestions are proposed. Firstly, better promote planners and their capabilities to improve awareness of what planners can do. Secondly, educate and build an understanding between central government politicians and planners over each others role to produce better planning outcomes.

Research Papers, Lincoln University

Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.

Research Papers, Lincoln University

Globally, the maximum elevations at which treelines are observed to occur coincide with a 6.4 °C soil isotherm. However, when observed at finer scales, treelines display a considerable degree of spatial complexity in their patterns across the landscape and are often found occurring at lower elevations than expected relative to the global-scale pattern. There is still a lack of understanding of how the abiotic environment imposes constraints on treeline patterns, the scales at which different effects are acting, and how these effects vary over large spatial extents. In this thesis, I examined abrupt Nothofagus treelines across seven degrees of latitude in New Zealand in order to investigate two broad questions: (1) What is the nature and extent of spatial variability in Nothofagus treelines across the country? (2) How is this variation associated with abiotic variation at different spatial scales? A range of GIS, statistical, and atmospheric modelling methods were applied to address these two questions. First, I characterised Nothofagus treeline patterns at a 15x15km scale across New Zealand using a set of seven, GIS-derived, quantitative metrics that describe different aspects of treeline position, shape, spatial configuration, and relationships with adjacent vegetation. Multivariate clustering of these metrics revealed distinct treeline types that showed strong spatial aggregation across the country. This suggests a strong spatial structuring of the abiotic environment which, in turn, drives treeline patterns. About half of the multivariate treeline metric variation was explained by patterns of climate, substrate, topographic and disturbance variability; on the whole, climatic and disturbance factors were most influential. Second, I developed a conceptual model that describes how treeline elevation may vary at different scales according to three categories of effects: thermal modifying effects, physiological stressors, and disturbance effects. I tested the relevance of this model for Nothofagus treelines by investigating treeline elevation variation at five nested scales (regional to local) using a hierarchical design based on nested river catchments. Hierarchical linear modelling revealed that the majority of the variation in treeline elevation resided at the broadest, regional scale, which was best explained by the thermal modifying effects of solar radiation, mountain mass, and differences in the potential for cold air ponding. Nonetheless, at finer scales, physiological and disturbance effects were important and acted to modify the regional trend at these scales. These results suggest that variation in abrupt treeline elevations are due to both broad-scale temperature-based growth limitation processes and finer-scale stress- and disturbance-related effects on seedling establishment. Third, I explored the applicability of a meso-scale atmospheric model, The Air Pollution Model (TAPM), for generating 200 m resolution, hourly topoclimatic data for temperature, incoming and outgoing radiation, relative humidity, and wind speeds. Initial assessments of TAPM outputs against data from two climate station locations over seven years showed that the model could generate predictions with a consistent level of accuracy for both sites, and which agreed with other evaluations in the literature. TAPM was then used to generate data at 28, 7x7 km Nothofagus treeline zones across New Zealand for January (summer) and July (winter) 2002. Using mixed-effects linear models, I determined that both site-level factors (mean growing season temperature, mountain mass, precipitation, earthquake intensity) and local-level landform (slope and convexity) and topoclimatic factors (solar radiation, photoinhibition index, frost index, desiccation index) were influential in explaining variation in treeline elevation within and among these sites. Treelines were generally closer to their site-level maxima in regions with higher mean growing season temperatures, larger mountains, and lower levels of precipitation. Within sites, higher treelines were associated with higher solar radiation, and lower photoinhibition and desiccation index values, in January, and lower desiccation index values in July. Higher treelines were also significantly associated with steeper, more convex landforms. Overall, this thesis shows that investigating treelines across extensive areas at multiple study scales enables the development of a more comprehensive understanding of treeline variability and underlying environmental constraints. These results can be used to formulate new hypotheses regarding the mechanisms driving treeline formation and to guide the optimal choice of field sites at which to test these hypotheses.