There is a growing body of research into the effects of micronutrients on human mental health. There is evidence that multi-ingredient formulas are beneficial especially in relation to serious mental health disorders such as mood and anxiety disorders, attention-deficit hyperactivity disorder and obsessive-compulsive disorders. However there is almost no scientific research which looks at the effects of these formulas in an animal population. Therefore the aim of this study was to investigate the effects of a micronutrient formula, EMPowerplus, on anxiety behaviour in rats, and whether there is a relationship between dose and anxiolytic effect. In order to investigate this 40 male and 40 female rats received a diet consisting of either 0%, 1.25%, 2.5% or 5% EMP+ from when they were weaned (post natal day 30) until the end of testing 141 days later. Animals were tested in a Y maze, a light-dark emergence box and an open field at mid-adulthood (PND 136-138) and late adulthood (PND 186-188). Results found that animals receiving the 5% supplemented diet occupied the centre squares the most, occupied the corner squares the least and ambulated the most in the open field compared to the other experimental groups and control groups. No significant differences were found in the Y maze or Light-dark box. Animals were found to display more anxiety-like behaviour at time 2 than at time 1 regardless of receiving a supplemented diet or not. Overall a higher dose of EMP+ was associated with the greatest reduction in anxiety related behaviour. Due to the impact of the September 4th, 2010 Canterbury Earthquake caution should be taken when interpreting these results.
Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/
The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
The Canterbury earthquakes in 2010 and 2011 had a significant impact on landlords and tenants of commercial buildings in the city of Christchurch. The devastation wrought on the city was so severe that in an unprecedented response to this disaster a cordon was erected around the central business district for nearly two and half years while demolition, repairs and rebuilding took place. Despite the destruction, not all buildings were damaged. Many could have been occupied and used immediately if they had not been within the cordoned area. Others had only minor damage but repairs to them could not be commenced, let alone completed, owing to restrictions on access caused by the cordon. Tenants were faced with a major problem in that they could not access their buildings and it was likely to be a long time before they would be allowed access again. The other problem was uncertainty about the legal position as neither the standard form leases in use, nor any statute, provided for issues arising from an inaccessible building. The parties were therefore uncertain about their legal rights and obligations in this situation. Landlords and tenants were unsure whether tenants were required to pay rent for a building that could not be accessed or whether they could terminate their leases on the basis that the building was inaccessible. This thesis looks at whether the common law doctrine of frustration could apply to leases in these circumstances, where the lease had made no provision. It analyses the history of the doctrine and how it applies to a lease, the standard form leases in use at the time of the earthquakes and the unexpected and extraordinary nature of the earthquakes. It then reports on the findings of the qualitative empirical research undertaken to look at the experiences of landlords and tenants after the earthquakes. It is argued that the circumstances of landlords and tenants met the test for the doctrine of frustration. Therefore, the doctrine could have applied to leases to enable the parties to terminate them. It concludes with a suggestion for reform in the form of a new Act to govern the special relationship between commercial landlords and tenants, similar to legislation already in place covering other types of relationships like those in residential tenancies and employment. Such legislation could provide dispute resolution services to enable landlords and tenants to have access to justice to determine their legal rights at all times, and in particular, in times of crisis.
“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011). Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008). In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists. But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings. Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch. The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions. Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities. Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.
Sea level rise is one consequence of Earth’s changing climate. Century-long tide gauge records show that global-mean sea-level rise reached 11-16 cm during the twentieth century at a mean rate of 1.2 mm/y. Today, the average rate of global-mean sea-level rise is higher at 3-4 mm/y and is expected to increase in the future. This represents a hazard to low elevation coastal zones worldwide. Yet, before global sea level projections can be used to characterise future coastal flood hazard at a local scale, the effects of tectonics (and other processes) that drive vertical land motion (VLM) must be considered. VLM is defined as the vertical velocity (uplift or subsidence) of the solid surface with respect to the centre of Earth. In this study, new VLM maps are generated over coastal strips in New Zealand, using Sentinel-1 InSAR and GNSS data. In New Zealand, measuring VLM using InSAR on naturally vegetated or agricultural land is difficult due to signal decorrelation. Along the rural Bay of Plenty coastal strip, I use a persistent-scatterer approach to generate a VLM map from both east-looking ascending and west-looking descending Sentinel-1 data between 2015-2021. Using time-series data over the same time period from a dense network of 20 GNSS sensors, I tie InSAR-derived line-of-sight velocity to the 2014 ITRF reference frame. I test two different methods for measuring VLM and compare the results against GNSS vertical velocity along the Bay of Plenty coast. Best results are achieved by first removing the interpolated horizontal GNSS velocity field from each of the InSAR datasets, before averaging the two VLM estimates. Measured VLM is between -3 and 3 mm/y, with negative values (subsidence) occurring within the low-lying Rangitāiki Plain and Ōpōtiki valley, and uplift across the elevated region west of Matatā. This thesis integrates geomorphological, geological, and historical levelling VLM records with modern satellite datasets to assess VLM across timescales ranging from 10 to 100,000 years at Matatā. Uplift rate has been variable through time, with average uplift over the last 300,000 years of 1 mm/y, 4.5 mm/y since 1720 years, 2 mm/y between 1950-1978, and 10 mm/y between 2004-2011. Previous modelling has shown that the best fit to the 2004-2011 rapid uplift rates is an inflating magmatic source at ~10 km depth beneath Matatā. To reconcile all data, I present a VLM model that consists of short-lived periods (7 years) of rapid uplift (10 mm/y), separated by longer periods (30 years) of lower background uplift (3 mm/y). The episodic nature of VLM at Matatā likely reflects short-lived periods of magmatic intrusion. Episodic VLM characterised by large rates of uplift (10 mm/y) has been seen at Taupō volcano, and other volcanic centers globally. It has been 12 years since the end of the last intrusion episode; this modelling suggest one may expect to observe increased uplift rates at Matatā in the coming decades. Densely populated urban coastal strips are most at risk from the effects of relative sea-level rise. At the same time, anthropogenic activities associated with urbanization, such as groundwater withdrawal, and land reclamation can lead to local land subsidence (LLS), further exacerbating the risk to urban infrastructure. LLS refers to subsidence relative to nearby land area assumed to be stable. In this thesis, I create the first high-resolution (10 m) maps of LLS at six urban coastal strips in New Zealand, with a combined length of 285 km, using Sentinel-1 InSAR data between 2018-2021. This analysis reveals 89% of urban coastal strips are subsiding at rates of -0.5 mm/y or greater, and 11% is subsiding at higher rates of -3.0 mm/y or greater. On average, subsidence is -0.6 to -2.9 mm/y higher at the coastal strip, compared to inland areas occupied by GNSS stations. This analysis also documents highly-localised hotspots of LLS, with subsidence rates of up to -15 mm/y. In Christchurch, rapid and localised subsidence (-8 mm/y) is observed within coastal suburbs New Brighton and Southshore. In most cities, the highest subsidence rates occur on land reclaimed in the early-late twentieth century, and in areas built on Holocene sediment. Time-series analysis of LLS at sites of reclaimed land shows both linear and non-linear rates of deformation over time periods of up to 6-8 years. This thesis highlights the variable exposure to relative sea-level rise of New Zealand coastal strips, and demonstrates that in many cases current rates of VLM should be expected to continue for the next few decades.
Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months. This study was therefore a test of the potentially synergistic effects of nutrient reduction and earthquake disturbance on invertebrate communities, associated habitats and food web dynamics. Because there was considerable site-to-site heterogeneity in the estuary, the sites in this study were selected to represent a eutrophication gradient from relatively “clean” (where the influence of tidal flows was high) to highly impacted (near the historical discharge site). The study was structured around these sites, with components before the wastewater diversion, after the diversion but before the earthquakes, and after the earthquakes. The eutrophication gradient was reflected in the composition and isotopic chemistry of primary producer and invertebrate communities and the characteristics of sediments across the sample sites. Sites closest to the former wastewater discharge pipe were the most eutrophic and had cohesive organic -rich, fine sediments and relatively depauperate communities dominated by the opportunistic taxa Capitellidae. The less-impacted sites had coarser, sandier sediments with fewer pollutants and far less organic matter than at the eutrophic sites, relatively high diversity and lower abundances of micro- and macro-algae. Sewage-derived nitrogen had became incorporated into the estuarine food web at the eutrophic sites, starting at the base of the food chain with benthic microalgae (BMA), which were found to use mostly sediment-derived nitrogen. Stable isotopic analysis showed that δ13C and δ15N values of most food sources and consumers varied spatially, temporally and in relation to the diversion of wastewater, whereas the earthquakes did not appear to affect the overall estuarine food web structure. This was seen particularly at the most eutrophic site, where isotopic signatures became more similar to the cleaner sites over two-and-a-half years after the diversion. New sediments (liquefaction) produced by the earthquakes were found to be coarser, have lower concentrations of heavy metals and less organic matter than old (existing) sediments. They also had fewer macroinvertebrate inhabitants initially after the earthquakes but most areas recovered to pre-earthquake abundance and diversity within two years. Field experiments showed that there were higher amounts of primary production and lower amounts of nutrient efflux from new sediments at the eutrophic sites after the earthquakes. Primary production was highest in new sediments due to the increased photosynthetic efficiency of BMA resulting from the increased permeability of new sediments allowing increased light penetration, enhanced vertical migration of BMA and the enhanced transport of oxygen and nutrients. The reduced efflux of NH4-N in new sediments indicated that the capping of a large portion of eutrophic old sediments with new sediments had reduced the release of legacy nutrients (originating from the historical discharge) from the sediments to the overlying water. Laboratory experiments using an array of species and old and new sediments showed that invertebrates altered levels of primary production and nutrient flux but effects varied among species. The mud snail Amphibola crenata and mud crab Austrohelice crassa were found to reduce primary production and BMA biomass through the consumption of BMA (both species) and its burial from bioturbation and the construction of burrows (Austrohelice). In contrast, the cockle Austrovenus stutchburyi did not significantly affect primary production and BMA biomass. These results show that changes in the structure of invertebrate communities resulting from disturbances can also have consequences for the functioning of the system. The major conclusions of this study were that the wastewater diversion had a major effect on food web dynamics and that the large quantities of clean and unpolluted new sediments introduced to the estuary during the earthquakes altered the recovery trajectory of the estuary, accelerating it at least throughout the duration of this study. This was largely through the ‘capping’ effect of the new liquefied, coarser-grained sediments as they dissipated across the estuary and covered much of the old organic-rich eutrophic sediments. For all aspects of this study, the largest changes occurred at the most eutrophic sites; however, the surrounding habitats were important as they provided the context for recovery of the estuary, particularly because of the very strong influence of sediments, their biogeochemistry, microalgal and macroalgal dynamics. There have been few studies documenting system level responses to eutrophication amelioration and to the best on my knowledge there are no other published studies examining the impacts of large earthquakes on benthic communities in an estuarine ecosystem. This research gives valuable insight and advancements in the scientific understanding of the effects that eutrophication recovery and large-scale disturbances can have on the ecology of a soft-sediment ecosystem.