The Canterbury earthquakes are unique in that the there have been a series of major earthquakes, each with their own subsequent aftershock pattern. These have extended from the first large earthquake in September 2010 to currently, at the time of writing, two years later. The last significant earthquake of over magnitude 5.0 on the Richter scale was in May on 2012, and the total number of aftershocks has exceeded 12,000. The consequences, in addition to the loss of life, significant injury and widespread damage, have been far reaching and long term, with detrimental effects and still uncertain effects for many. This provides unique challenges for individuals, communities, organisations and institutions within Canterbury. This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.
This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.
New Zealand's devastating Canterbury earthquakes provided an opportunity to examine the efficacy of existing regulations and policies relevant to seismic strengthening of vulnerable buildings. The mixed-methods approach adopted, comprising both qualitative and quantitative approaches, revealed that some of the provisions in these regulations pose as constraints to appropriate strengthening of earthquake-prone buildings. Those provisions include the current seismic design philosophy, lack of mandatory disclosure of seismic risks and ineffective timeframes for strengthening vulnerable buildings. Recommendations arising from these research findings and implications for pre-disaster mitigation for future earthquake and Canterbury's post-disaster reconstruction suggest: (1) a reappraisal of the requirements for earthquake engineering design and construction, (2) a review and realignment of all regulatory frameworks relevant to earthquake risk mitigation, and (3) the need to develop a national programme necessary to achieve consistent mitigation efforts across the country. These recommendations are important in order to present a robust framework where New Zealand communities such as Christchurch can gradually recover after a major earthquake disaster, while planning for pre-disaster mitigation against future earthquakes. AM - Accepted Manuscript
Though rare and unpredictable, earthquakes can and do cause catastrophic destruction when they impact unprepared and vulnerable communities. Extensive damage and failure of vulnerable buildings is a key factor which contributes to seismic-related disasters, making the proactive management of these buildings a necessity to reduce the risk of future disasters arising. The devastating Canterbury earthquakes of 2010 and 2011 brought the urgency of this issue to national importance in New Zealand. The national earthquake-prone building framework came into effect in 2017, obligating authorities to identify existing buildings with the greatest risk of collapse in strong earthquakes and for building owners to strengthen or demolish these buildings within a designated period of time. Though this framework is unique to New Zealand, the challenge of managing the seismic risk of such buildings is common amongst all seismically-active countries. Therefore, looking outward to examine how other jurisdictions legally manage this challenge is useful for reflecting on the approaches taken in New Zealand and understand potential lessons which could be adopted. This research compares the legal framework used to reduce the seismic risk of existing buildings in New Zealand with that of the similarly earthquake-prone countries of Japan and Italy. These legal frameworks are examined with a particular focus on the proactive goal of reducing risk and improving resilience, as is the goal of the international Sendai Framework for Disaster Risk Reduction 2015-2030. The Sendai Framework, which each of the case study countries have committed to and thus have obligations under, forms the legal basis of the need for states to reduce disaster risk in their jurisdictions. In particular, the states’ legal frameworks for existing building risk reduction are examined in the context of the Sendai priorities of understanding disaster risk, strengthening disaster risk governance, and investing in resilience. While this research illustrates that the case study countries have each adopted more proactive risk reduction frameworks in recent years in anticipation of future earthquakes, the frameworks currently focus on a very narrow range of existing buildings and thus are not currently sufficient for promoting the long-term resilience of building stocks. In order to improve resilience, it is argued, legal frameworks need to include a broader range of buildings subject to seismic risk reduction obligations and also to broaden the focus on long-term monitoring of potential risk to buildings.
This thesis focuses on the role of legal preparedness for managing large-scale urban disasters in Aotearoa New Zealand. It uses the Auckland Volcanic Field as a case study to answer the question: ‘is New Zealand’s current legal framework prepared to respond to and recover from a large-scale urban disaster?’. The Auckland Volcanic Field was chosen as the main case study because a future eruption is a low likelihood, high-impact event that New Zealand is going to have to manage in the future. Case studies are a key feature of this thesis as both New Zealand based and overseas examples are used to explore the role of legal preparedness by identifying and investigating a range of legal issues that need to be addressed in advance of a future Auckland Volcanic Field eruption. Of particular interest is the impact of legal preparedness for the recovery phase. The New Zealand case studies include; Canterbury earthquake sequence 2010-2011, the Kaikōura earthquake 2016, the Auckland flooding 2018, and the North Island Severe Weather event 2023, which encompasses both the Auckland Anniversary weekend flooding and Cyclone Gabrielle. As New Zealand has not experienced a large-scale urban volcanic eruption, overseas examples are explored to provide insights into the legal issues that are volcano specific. The overseas volcanic case studies cover eruptions in Heimaey (Iceland), the Soufrière Hills (Montserrat and the Grenadines), La Soufrière (St Vincent) and Tungurahua (Ecuador). New Zealand’s past experiences highlight a trend for introducing post-event legal frameworks to manage recovery. Consequently, the current disaster management system is not prioritising legal preparedness and instead is choosing to rely on exceptional powers. Unsurprisingly, the introduction of new post-event recovery frameworks has repercussions. In New Zealand, new post-event legal frameworks are introduced swiftly under urgency, they contain broad unstructured decision-making powers, and are often flawed. As these exceptional new frameworks sit outside the ‘normal’ legal frameworks, they in effect create a parallel “shadow system”. Based on the evidence explored in this thesis it does not appear that Auckland’s current disaster management framework is prepared to deal with a large-scale urban event caused by an Auckland Volcanic Field eruption. Following this conclusion, it is the submission of this thesis that New Zealand’s current legal framework is not prepared to respond to and recover from a large-scale urban disaster. To become legally prepared, New Zealand needs to consider the legal tools required to manage large-scale urban disasters in advance. This will prevent the creation of a legal vacuum in the aftermath of disasters and the need for new recovery frameworks. Adopting a new attitude will require a change in approach towards legal preparedness which prioritises it, rather than sidelining it. This may also require changes within New Zealand’s disaster management system including the introduction of a formal monitoring mechanism, which will support and prioritise legal preparedness. This thesis has shown that not legally preparing for future disasters is a choice which carries significant consequences. None of these consequences are inevitable when managing large-scale disasters, however they are inevitable when frameworks are not legally prepared in advance. To not legally prepare, is to prepare to fail and thus create a disaster by choice.
Sewerage systems convey sewage, or wastewater, from residential or commercial buildings through complex reticulation networks to treatment plants. During seismic events both transient ground motion and permanent ground deformation can induce physical damage to sewerage system components, limiting or impeding the operability of the whole system. The malfunction of municipal sewerage systems can result in the pollution of nearby waterways through discharge of untreated sewage, pose a public health threat by preventing the use of appropriate sanitation facilities, and cause serious inconvenience for rescuers and residents. Christchurch, the second largest city in New Zealand, was seriously affected by the Canterbury Earthquake Sequence (CES) in 2010-2011. The CES imposed widespread damage to the Christchurch sewerage system (CSS), causing a significant loss of functionality and serviceability to the system. The Christchurch City Council (CCC) relied heavily on temporary sewerage services for several months following the CES. The temporary services were supported by use of chemical and portable toilets to supplement the damaged wastewater system. The rebuild delivery agency -Stronger Christchurch Infrastructure Rebuild Team (SCIRT) was created to be responsible for repair of 85 % of the damaged horizontal infrastructure (i.e., water, wastewater, stormwater systems, and roads) in Christchurch. Numerous initiatives to create platforms/tools aiming to, on the one hand, support the understanding, management and mitigation of seismic risk for infrastructure prior to disasters, and on the other hand, to support the decision-making for post-disaster reconstruction and recovery, have been promoted worldwide. Despite this, the CES in New Zealand highlighted that none of the existing platforms/tools are either accessible and/or readable or usable by emergency managers and decision makers for restoring the CSS. Furthermore, the majority of existing tools have a sole focus on the engineering perspective, while the holistic process of formulating recovery decisions is based on system-wide approach, where a variety of factors in addition to technical considerations are involved. Lastly, there is a paucity of studies focused on the tools and frameworks for supporting decision-making specifically on sewerage system restoration after earthquakes. This thesis develops a decision support framework for sewerage pipe and system restoration after earthquakes, building on the experience and learning of the organisations involved in recovering the CSS following the CES in 2010-2011. The proposed decision support framework includes three modules: 1) Physical Damage Module (PDM); 2) Functional Impact Module (FIM); 3) Pipeline Restoration Module (PRM). The PDM provides seismic fragility matrices and functions for sewer gravity and pressure pipelines for predicting earthquake-induced physical damage, categorised by pipe materials and liquefaction zones. The FIM demonstrates a set of performance indicators that are categorised in five domains: structural, hydraulic, environmental, social and economic domains. These performance indicators are used to assess loss of wastewater system service and the induced functional impacts in three different phases: emergency response, short-term recovery and long-term restoration. Based on the knowledge of the physical and functional status-quo of the sewerage systems post-earthquake captured through the PDM and FIM, the PRM estimates restoration time of sewer networks by use of restoration models developed using a Random Forest technique and graphically represented in terms of restoration curves. The development of a decision support framework for sewer recovery after earthquakes enables decision makers to assess physical damage, evaluate functional impacts relating to hydraulic, environmental, structural, economic and social contexts, and to predict restoration time of sewerage systems. Furthermore, the decision support framework can be potentially employed to underpin system maintenance and upgrade by guiding system rehabilitation and to monitor system behaviours during business-as-usual time. In conjunction with expert judgement and best practices, this framework can be moreover applied to assist asset managers in targeting the inclusion of system resilience as part of asset maintenance programmes.
Livelihood holds the key to a rapid recovery following a large-scale devastating disaster, building its resilience is of paramount importance. While much attention has been given to how to help people who are displaced from their jobs to regain employment, little research on livelihood resilience has been undertaken for those relocated communities following a disaster event. By studying five re-located villages post-2004 Indian Ocean Tsunami in Banda Aceh and Aceh Besar, Indonesia, this research has identified the indicators of livelihood resilience and the critical factors driving it for post-disaster relocated communities. A mixed approach, combining questionnaire surveys, semistructured interviews, and field observations, was used for the collection of data. Housing entitlement, the physical and mental health of residents, access to external livelihood support and the provision of infrastructure and basic services were identified as amongst the most critical indicators that represent the level of livelihood resilience. Early recovery income support, physical and mental health, availability and timeliness of livelihood support, together with cultural sensitivity and governance structure, are amongst the most important factors. Given the nature of resettlement, access to infrastructure, location of relocated sites, the safety of the neighbourhood and the ability to transfer to other jobs/skills also play an important role in establishing sustained employment for relocated communities in Indonesia. Those indicators and factors were synthesised into a framework which was further tested in the recovery of Christchurch, and Kaikoura, New Zealand during their recovery from devastating earthquakes. It is suggested that the framework can be used by government agencies and aid organisations to assess the livelihood resilience of post-disaster relocated communities. This will help better them plan support policies and/or prioritise resilience investment strategies to ensure that the recovery needs of those relocated are best met.
The objective of the study presented herein is to assess three commonly used CPT-based liquefaction evaluation procedures and three liquefaction severity index frameworks using data from the 2010–2011 Canterbury earthquake sequence. Specifically, post-event field observations, ground motion recordings, and results from a recently completed extensive geotechnical site investigation programme at selected strong motion stations (SMSs) in the city of Christchurch and surrounding towns are used herein. Unlike similar studies that used data from free-field sites, accelerogram characteristics at the SMS locations can be used to assess the performance of liquefaction evaluation procedures prior to their use in the computation of surficial manifestation severity indices. Results from this study indicate that for cases with evidence of liquefaction triggering in the accelerograms, the majority of liquefaction evaluation procedures yielded correct predictions, regardless of whether surficial manifestation of liquefaction was evident or not. For cases with no evidence of liquefaction in the accelerograms (and no observed surficial evidence of liquefaction triggering), the majority of liquefaction evaluation procedures predicted liquefaction was triggered. When all cases are used to assess the performance of liquefaction severity index frameworks, a poor correlation is shown between the observed severity of liquefaction surface manifestation and the calculated severity indices. However, only using those cases where the liquefaction evaluation procedures yielded correct predictions, there is an improvement in the correlation, with the Liquefaction Severity Number (LSN) being the best performing of the frameworks investigated herein. However scatter in the relationship between the observed and calculated surficial manifestation still remains for all liquefaction severity index frameworks.
In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.
The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.
The Bachelor of Youth and Community Leadership (BYCL) was launched by the University of Canterbury (UC) in 2020. The genesis of this new degree was a Stage One service-learning course that, in turn, arose from the innovative and active response of many of the university’s students in the aftermath of the Christchurch earthquakes in 2010 and 2011. That innovative action saw the formation of the Student Volunteer Army as well as the adoption of a new set of Graduate Attributes for every undergraduate at the university. The idea of a specialist undergraduate degree that captured this unique chain of events began to take form from 2016. The resulting degree was developed as a flexible, transdisciplinary programme for young (and not so young) leaders wanting an academic grounding for their passions in community leadership and social action. In 2020, the inaugural intake of students commenced their studies. In this reflection, we discuss our experience of teaching within the BYCL for the first time, using a collaborative approach to teaching that we based on what we understand, individually and collectively, to draw on principles of democratic pedagogy.
Disasters are rare events with major consequences; yet comparatively little is known about managing employee needs in disaster situations. Based on case studies of four organisations following the devastating earthquakes of 2010 - 2011 in Christchurch, New Zealand, this paper presents a framework using redefined notions of employee needs and expectations, and charting the ways in which these influence organisational recovery and performance. Analysis of in-depth interview data from 47 respondents in four organisations highlighted the evolving nature of employee needs and the crucial role of middle management leadership in mitigating the effects of disasters. The findings have counterintuitive implications for human resource functions in a disaster, suggesting that organisational justice forms a central framework for managing organisational responses to support and engage employees for promoting business recovery.
The 2010–2011 Canterbury earthquakes and their aftermath have been described by the Human Rights Commission as one of New Zealand's greatest contemporary human rights challenges. This article documents the shortcomings in the realisation of the right to housing in post-quake Canterbury for homeowners, tenants and the homeless. The article then considers what these shortcomings tell us about New Zealand's overall human rights framework, suggesting that the ongoing and seemingly intractable nature of these issues and the apparent inability to resolve them indicate an underlying fragility implicit in New Zealand's framework for dealing with the consequences of a large-scale natural disaster. The article concludes that there is a need for a comprehensive human rights-based approach to disaster preparedness, response and recovery in New Zealand.
Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript
This analysis employs both qualitative and quantitative approaches to identify how young adults in New Zealand aged 18-25 years old have engaged with All Right? campaign material. A survey targeting young adults returned 51 viable out of 117 responses due to participation prerequisites. From the survey, five participants elaborated on their thoughts in an in-depth interview voluntarily. Interviews were conducted with key personnel from All Right? to craft broader understanding of the initiative whilst enhancing knowledge of mental health frameworks and their application. Ciaran Fox, Lucy Daeth and Sara Epperson, who have been imperative to the success of the campaign, shared their working experience in the community and public health sector and how this intertwines to their current roles at All Right?. Discussions of key frameworks, community conversations, the development of communication strategies and how All Right? approached Canterbury publics in a post-earthquake setting provided insight to the importance of understanding community circumstance in initial crisis and the correlated secondary stressors.
In this dissertation it is argued that the Canterbury Earthquake Recovery Act 2011 and the Canterbury Earthquake Recovery Authority were both necessary and inevitable given the trends and traditions of civil defence emergency management (CDEM) in New Zealand. The trends and traditions of civil defence are such that principles come before practice, form before function, and change is primarily brought about through crisis and criticism. The guiding question of the research was why were a new governance system and law made after the Canterbury earthquakes in 2010 and 2011? Why did this outcome occur despite the establishment of a modern emergency management system in 2002 which included a recovery framework that had been praised by international scholars as leading edge and a model for other countries? The official reason was the unprecedented scale and demands of the recovery – but a disaster of such scale is the principle reason for having a national emergency management system. Another explanation is the lack of cooperation among local authorities – but that raises the question of whether the CDEM recovery framework would have been successful in another locality. Consequentially, the focus of this dissertation is on the CDEM recovery framework and how New Zealand came to find itself making disaster law during a disaster. Recommendations include a review of emergency powers for recovery, a review of the capabilities needed to fulfil the mandate of Recovery Managers, and the establishment of a National Recovery Office with a cadre of Recovery Managers that attend every recovery to observe, advise, or assume control as needed. CDEM Group Recovery Managers would be seconded to the National Recovery Office which would allow for experience in recovery management to be developed and institutionalised through regular practice.
“much of what we know about leadership is today redundant because it is literally designed for a different operating model, a different context, a different time” (Pascale, Sternin, & Sternin, p. 4). This thesis describes a project that was designed with a focus on exploring ways to enhance leadership capacity in non-government organisations operating in Christchurch, New Zealand. It included 20 CEOs, directors and managers from organisations that cover a range of settings, including education, recreation, and residential and community therapeutic support; all working with adolescents. The project involved the creation of a peer-supported professional learning community that operated for 14 months; the design and facilitation of which was informed by the Appreciative Inquiry principles of positive focus and collaboration. At the completion of the research project in February 2010, the leaders decided to continue their collective processes as a self-managing and sustaining professional network that has grown and in 2014 is still flourishing under the title LYNGO (Leaders of Youth focussed NGOs). Two compelling findings emerged from this research project. The first of these relates to efficacy of a complexity thinking framework to inform the actions of these leaders. The leaders in this project described the complexity thinking framework as the most relevant, resonant and dynamic approach that they encountered throughout the research project. As such this thesis explores this complexity thinking informed leadership in detail as the leaders participating in this project believed it offers an opportune alternative to more traditional forms of positional leadership and organisational approaches. This exploration is more than simply a rationale for complexity thinking but an iterative in-depth exploration of ‘complexity leadership in action’ which in Chapter 6 elaborates on detailed leadership tools and frameworks for creating the conditions for self-organisation and emergence. The second compelling finding relates to efficacy of Appreciative Inquiry as an emergent research and development process for leadership learning. In particular the adoption of two key principles; positive focus and inclusivity were beneficial in guiding the responsive leadership learning process that resulted in a professional learning community that exhibited high engagement and sustainability. Additionally, the findings suggest that complexity thinking not only acts as a contemporary framework for adaptive leadership of organisations as stated above; but that complexity thinking has much to offer as a framework for understanding leadership development processes through the application of Appreciative Inquiry (AI)-based principles. A consideration of the components associated with complexity thinking has promise for innovation and creativity in the development of leaders and also in the creation of networks of learning. This thesis concludes by suggesting that leaders focus on creating hybrid organisations, ones which leverage the strengths (and minimise the limitations) of self-organising complexity-informed organisational processes, while at the same time retaining many of the strengths of more traditional organisational management structures. This approach is applied anecdotally to the place where this study was situated: the post-earthquake recovery of Christchurch, New Zealand.
This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i
Earthquakes impacting on the built environment can generate significant volumes of waste, often overwhelming existing waste management capacities. Earthquake waste can pose a public and environmental health hazard and can become a road block on the road to recovery. Specific research has been developed at the University of Canterbury to go beyond the current perception of disaster waste as a logistical hurdle, to a realisation that disaster waste management is part of the overall recovery process and can be planned for effectively. Disaster waste decision-makers, often constrained by inappropriate institutional frameworks, are faced with conflicting social, economic and environmental drivers which all impact on the overall recovery. Framed around L’Aquila earthquake, Italy, 2009, this paper discusses the social, economic and environmental effects of earthquake waste management and the impact of existing institutional frameworks (legal, financial and organisational). The paper concludes by discussing how to plan for earthquake waste management.
In the late 1960s the Wellington City Council surveyed all the commercial buildings in the city and marked nearly 200 as earthquake prone. The owners were given 15 years to either strengthen or demolish their buildings. The end result was mass demolition throughout the seventies and eighties.¹ Prompted by the Christchurch earthquakes, once again the council has published a list of over 630 earthquake prone buildings that need to be strengthened or demolished by 2030.²Of these earthquake prone buildings, the majority were built between 1880 and 1930, with 125 buildings appearing on the Wellington City Council Heritage Building List.³ This list accounts for a significant proportion of character buildings in the city. There is a danger that the aesthetic integrity of our city will be further damaged due to the urgent need to strengthen these buildings. Many of the building owners are resistant because of the high cost. By adapting these buildings to house co-workspaces, we can gain more than just the retention of the building’s heritage. The seismic upgrade provides the opportunity for the office space to be redesigned to suit changes in the ways we work. Through a design-based research approach this thesis proposes a framework that clarifies the process of adapting Wellington’s earthquake prone heritage buildings to accommodate co-working. This framework deals with the key concepts of program, structure and heritage. The framework is tested on one of Wellington’s earthquake prone heritage buildings, the Wellington Working Men’s Club, in order to demonstrate what can be gained from this strengthening process. ¹ Reid, J., “Hometown Boomtown,” in NZ On Screen (Wellington, 1983).
² Wellington City Council, List of Earthquake Prone Buildings as at 06/03/2017. (Wellington: Absolutely Positively Wellington. 2017).
³ ibid.
There are many things that organisations of any size can do to prepare for a disaster or crisis. Traditionally, the advice given to business has focused on identifying risks, reducing their likely occurrence, and planning in advance how to respond. More recently, there is growing interest in the broader concept of organisational resilience which includes planning for crisis but also considers traits that lead to organisational adaptability and ability to thrive despite adverse circumstances. In this paper we examine the policy frameworks1 within New Zealand that influence the resilience of small and medium sized businesses (SMEs). The first part of the paper focuses on the New Zealand context, including the prevailing political and economic ideologies, the general nature of New Zealand SMEs and the nature of New Zealand’s hazard environment. The paper then goes on to outline the key policy frameworks in place relevant to SMEs and hazards. The final part of the paper examines the way the preexisting policy environment influenced the response of SMEs and Government following the Canterbury earthquakes.
Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.
Data from the 2010-2011 Canterbury earthquake sequence (CES) provides an unprecedented opportunity to assess and advance the current state of practice for evaluating liquefaction triggering. Towards this end, select case histories from the CES are used herein to assess the predictive capabilities of three alternative CPT-based simplified liquefaction evaluation procedures: Robertson and Wride (1998); Moss et al. (2006); and Idriss and Boulanger (2008). Additionally, the Liquefaction Potential Index (LPI) framework for predicting the severity of surficial liquefaction manifestations is also used to assess the predictive capabilities of the liquefaction evaluation procedures. Although it is not without limitations, use of the LPI framework for this purpose circumvents the need for selecting “critical” layers and their representative properties for study sites, which inherently involves subjectivity and thus has been a point of contention among researchers. It was found that while all the assessed liquefaction triggering evaluation procedures performed well for the parameter ranges of the sites analyzed, the procedure proposed by Idriss and Boulanger (2008) yielded predictions that are more consistent with field observations than the other procedures. However, use of the Idriss and Boulanger (2008) procedure in conjunction with a Christchurch-specific correlation to estimate fines content showed a decreased performance relative to using a generic fines content correlation. As a result, the fines correction for the Idriss and Boulanger (2008) procedure needs further study.
This thesis explores how social entrepreneurship develops following a crisis. A review of literature finds that despite more than 15 years of academic attention, a common definition of social entrepreneurship remains elusive, with the field lacking the unified framework to set it apart as a specialised field of study. There are a variety of different conceptualisations of how social entrepreneurship works, and what it aims to achieve. The New Zealand context for social entrepreneurship is explored, finding that it receives little attention from the government and education sectors, despite its enormous potential. A lack of readily available information on social entrepreneurship leads most studies to investigate it as a phenomenon, and given the unique context of this research, it follows suit. Following from several authors’ recommendations that social entrepreneurship be subjected to further exploration, this is an exploratory, inductive study. A multiple case study is used to explore how social entrepreneurship develops following a natural disaster, using the example of the February 2011 earthquake in Christchurch, New Zealand. With little existing theory in this research area, this method is used to provide interesting examples of how the natural disaster, recognised as a crisis, can lead to business formation. Findings revealed the crisis initially triggered an altruistic response from social entrepreneurs, leading them to develop newly highlighted opportunities that were related to fields in which they had existing skills and expertise. In the process of developing these opportunities, initial altruistic motivations faded, with a new focus on the pursuit of a social mission and aims for survival and growth. The social missions addressed broad issues, and while they did address the crisis to differing extents, they were not confined to addressing its consequences. A framework is presented to explain how social entrepreneurship functions, once triggered in response to crisis. This framework supports existing literature that depicts social entrepreneurship as a continuous process, and illustrates the effects of a crisis as the catalyst for social business formation. In the aftermath of a crisis, when resources are likely to be scarce, social entrepreneurs play a significant role in the recovery process and their contributions should be highly valued both by government and relevant disaster response bodies. Policies that support social entrepreneurs and their ventures should be considered in the same way as commercial ventures.
Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.
From 2010, Canterbury, a province of Aotearoa New Zealand, experienced three major disaster events. This study considers the socio-ecological impacts on cross-sectoral suicide prevention agencies and their service users of the 2010 – 2016 Canterbury earthquake sequence, the 2019 Christchurch mosque attacks and the COVID-19 pandemic in Canterbury. This study found the prolonged stress caused by these events contributed to a rise in suicide risk factors including anxiety, fear, trauma, distress, alcohol misuse, relationship breakdown, childhood adversity, economic loss and deprivation. The prolonged negative comment by the media on wellbeing in Canterbury was also unhelpful and affected morale. The legacy of these impacts was a rise in referrals to mental health services that has not diminished. This adversity in the socio-ecological system also produced post-traumatic growth, allowing Cantabrians to acquire resilience and help-seeking abilities to support them psychologically through the COVID-19 pandemic. Supporting parental and teacher responses, intergenerational support and targeted public health campaigns, as well as Māori family-centred programmes, strengthened wellbeing. The rise in suicide risk led to the question of what services were required and being delivered in Canterbury and how to enable effective cross-sectoral suicide prevention in Canterbury, deemed essential in all international and national suicide prevention strategies. Components from both the World Health Organisation Suicide Prevention Framework (WHO, 2012; WHO 2021) and the Collective Impact model (Hanleybrown et al., 2012) were considered by participants. The effectiveness of dynamic leadership and the essential conditions of resourcing a supporting agency were found as were the importance of processes that supported equity, lived experience and the partnership of Māori and non-Māori stakeholders. Cross-sectoral suicide prevention was found to enhance the wellbeing of participants, hastening learning, supporting innovation and raising awareness across sectors which might lower stigma. Effective communication was essential in all areas of cross-sectoral suicide prevention and clear action plans enabled measurement of progress. Identified components were combined to create a Collective Impact Suicide Prevention framework that strengthens suicide prevention implementation and can be applied at a local, regional and national level. This study contributes to cross-sectoral suicide prevention planning by considering the socio- ecological, policy and practice mitigations required to lower suicide risk and to increase wellbeing and post-traumatic growth, post-disaster. This study also adds to the growing awareness of the contribution that social work can provide to suicide prevention and conceptualises an alternative governance framework and practice and policy suggestions to support effective cross-sectoral suicide prevention.
There is a now a rich literature on the connections between digital media, networked computing, and the shaping of urban material cultures. Much less has addressed the post-disaster context, like we face in Christchurch, where it is more a case of re-build rather than re-new. In what follows I suggest that Lev Manovich’s well-known distinction between narrative and database as distinct but related cultural forms is a useful framework for thinking about the Christchurch rebuild, and perhaps urbanism more generally.
The initial goal of this research was to explore how SME business models change in response to a crisis. Keeping this in mind, the business model canvas (Osterwalder & Pigneur, 2010) was used as a tool to analyse SME business models in the Canterbury region of New Zealand. The purpose was to evaluate the changes SMEs instituted in their business models after being hit by a series of earthquakes in 2010 and 2011. The idea was to conduct interviews with business owners and analyse them using grounded theory methods. As this method is iterative and requires simultaneous data collection and analysis, a tentative model was proposed after first phase of the data collection and analysis. However, as a result of this process, it became apparent that owner-specific characteristics, action orientation and networks were more prominent in the data than business model elements. Although the SMEs in this study experienced several operational changes in their business models, such as a change of location, modifications to their payment terms or expanded/restricted target markets, the suggested framework highlights how owner-specific attributes ensured the recovery of their businesses. After the initial framework was suggested, subsequent interviews were conducted to test, verify, and modify the tentative model. Three aspects of business recovery emerged: (a) cognitive coping – the business owner’s mind-set and motive; (b) adaptive coping – the ability of business owner to take corrective actions; and (c) social capital – the social network of a business owner, including formal and informal connections and their significance. Three distinct groups were identified; self-sufficient SMEs, socially-based SMEs and surviving SMEs. This thesis proposes a grounded theory of business recovery for SMEs following a disaster. Cognitive coping and social capital enabled the owners to take actions, which eventually led to the desired outcomes for the businesses.
SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database.
The nonlinear dynamic soil-foundation-structure interaction (SFSI) can signifi cantly affect the seismic response of buildings, causing additional deformation modes, damage and repair costs. Because of nonlinear foundation behaviour and interactions, the seismic demand on the superstructure may considerably change, and also permanent deformations at the foundation level may occur. Although SFSI effects may be benefi cial to the superstructure performance, any advantage would be of little structural value unless the phenomenon can be reliably controlled and exploited. Detrimental SFSI effects may also occur, including acceleration and displacement response ampli cation and differential settlements, which would be unconservative to neglect. The lack of proper understanding of the phenomenon and the limited available simpli ed tools accounting for SFSI have been major obstacles to the implementation of integrated design and assessment procedures into the everyday practice. In this study concepts, ideas and practical tools (inelastic spectra) for the seismic design and assessment of integrated foundation-superstructure systems are presented, with the aim to explicitly consider the impact of nonlinearities occurring at the soil-foundation interface on the building response within an integrated approach, where the foundation soil and superstructure are considered as part of an integrated system when evaluating the seismic response, working synergically for the achievement of a target global performance. A conceptual performance-based framework for the seismic design and assessment of integrated foundation-superstructure systems is developed. The framework is based on the use of peak and residual response parameters for both the superstructure and the foundation, which are then combined to produce the system performance matrix. Each performance matrix allows for worsening of the performance when different contributions are combined. An attempt is made to test the framework by using case histories from the 2011 Christchurch earthquake, which are previously shown to have been severely affected by nonlinear SFSI. The application highlights the framework sensitivity to the adopted performance limit states, which must be realistic for a reliable evaluation of the system performance. Constant ductility and constant strength inelastic spectra are generated for nonlinear SFSI systems (SDOF nonlinear superstructure and 3DOF foundation allowing for uplift and soil yielding), representing multistorey RC buildings with shallow rigid foundations supported by cohesive soils. Different ductilities/strengths, hysteretic rules (Bi-linear, Takeda and Flag-Shape), soil stiffness and strength and bearing capacity factors are considered. Footings and raft foundations are investigated, characterized respectively by constant (3 and 8) and typically large bearing capacity factors. It is confi rmed that when SFSI is considered, the superstructure yielding force needed to satisfy a target ductility for a new building changes, and that similarly, for an existing building, the ductility demand on a building of a given strength varies. The extent of change of seismic response with respect to xed-base (FB) conditions depends on the class of soils considered, and on the bearing capacity factor (SF). For SF equal to 3, the stiffer soils enhance the nonlinear rotational foundation behaviour and are associated with reduced settlement, while the softer ones are associated with increased settlement response but not signi ficant rotational behaviour. On average terms, for the simplifi ed models considered, SFSI is found to be bene cial to the superstructure performance in terms of acceleration and superstructure displacement demand, although exceptions are recorded due to ground motion variability. Conversely, in terms of total displacement, a signi cant response increase is observed. The larger the bearing capacity factor, the more the SFSI response approaches the FB system. For raft foundation buildings, characterized by large bearing capacity factors, the impact of foundation response is mostly elastic, and the system on average approaches FB conditions. Well de fined displacement participation factors to the peak total lateral displacement are observed for the different contributions (i.e. peak foundation rotation and translation and superstructure displacement). While the superstructure and foundation rotation show compensating trends, the foundation translation contribution varies as a function of the moment-to-shear ratio, becoming negligible in the medium-to-long periods. The longer the superstructure FB period, the less the foundation response is signifi cant. The larger the excitation level and the less ductile the superstructure, the larger the foundation contribution to the total lateral displacement, and the less the superstructure contribution. In terms of hysteretic behaviour, its impact is larger when the superstructure response is more signifi cant, i.e. for the softer/weaker soils and larger ductilities. Particularly, for the Flag Shape rule, larger superstructure displacement participation factors and smaller foundation contributions are recorded. In terms of residual displacements, the total residual-to-maximum ratios are similar in amplitudes and trends to the corresponding FB system responses, with the foundation and superstructure contributions showing complementary trends. The impact of nonlinear SFSI is especially important for the Flag Shape hysteresis rule, which would not otherwise suffer of any permanent deformations. By using the generated peak and residual inelastic spectra (i.e. inelastic acceleration/ displacement modifi cation factor spectra, and/or participation factor and residual spectra), conceptual simplifi ed procedures for the seismic design and assessment of integrated foundation-superstructure systems are presented. The residual displacements at both the superstructure and foundation levels are explicitly considered. Both the force- and displacement-based approaches are explored. The procedures are de fined to be complementary to the previously proposed integrated performance-based framework. The use of participation factor spectra allows the designer to easily visualize the response of the system components, and could assist the decision making process of both the design and assessment of SFSI systems. The presented numerical results have been obtained using simpli ed models, assuming rigid foundation behaviour and neglecting P-Delta effects. The consideration of more complex systems including asymmetry in stiffness, mass, axial load and ground conditions with a exible foundation layout would highlight detrimental SFSI effects as related to induced differential settlements, while accounting for PDelta effects would further amplify the displacement response. Also, the adopted acceleration records were selected and scaled to match conventional design spectra, thus not representing any response ampli cation in the medium-to-long period range which could as well cause detrimental SFSI effects. While these limitations should be the subject of further research, this study makes a step forward to the understanding of SFSI phenomenon and its incorporation into performance-based design/assessment considerations.