Search

found 760 results

Research papers, The University of Auckland Library

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091

Research papers, The University of Auckland Library

This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.

Research papers, University of Canterbury Library

In this paper, the characteristics of near-fault ground motions recorded during the Mw7.1 Darfield and Mw 6.2 Christchurch earthquakes are examined and compared with existing empirical models. The characteristics of forward-directivity effects are first examined using a wavelet-based pulse-classification algorithm. This is followed by an assessment of the adequacy of empirical models which aim to capture the effect of directivity effects on amplifying the acceleration response spectra; and the period and peak velocity of the forward-directivity pulse. It is illustrated that broadband directivity models developed by Somerville et al. (1997) and Abrahamson (2000) generally under-predict the observed amplification of response spectral ordinates at longer vibration periods. In contrast, a recently developed narrowband model by Shahi and Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods surrounding the directivity pulse period. Although the empirical predictions of the pulse period are generally favourable for the Christchurch earthquake, the observations from the Darfield earthquake are significantly under-predicted. The elongation in observed pulse periods is inferred as being a result of the soft sedimentary soils of the Canterbury basin. However, empirical predictions of the observed peak velocity associated with the directivity pulse are generally adequate for both events.

Research papers, University of Canterbury Library

The Canterbury earthquake and aftershock sequence in New Zealand during 2010-2011 subjected the city’s structures to a significant accumulated cyclic demand and raised significant questions regarding the low-cycle fatigue demands imposed upon the structures. There is a significant challenge to quantify the level of cumulative demand imposed on structures and to assess the percentage of a structure's fatigue life that has been consumed as a result of this earthquake sequence. It is important to be able to quantify the cumulative demand to determine how a building will perform in a subsequent large earthquake and inform repair and re-occupancy decisions. This paper investigates the cumulative fatigue demand for a structure located within the Christchurch Central Business District (CBD). Time history analysis and equivalent cycle counting methods are applied across the Canterbury earthquake sequence, using key events from September 4th 2010 and February 22nd , 2011 main shocks. The estimate of the cumulative fatigue demand is then compared to the expected capacity of a case study reinforced concrete bridge pier, to undertake a structure-specific fatigue assessment. The analysis is undertaken to approximate the portion of the structural fatigue capacity that has been consumed, and how much residual capacity remains. Results are assessed for recordings at the four Christchurch central city strong motion recording sites installed by the GeoNet programme, to provide an estimate of variation in results. The computed cyclic demand results are compared to code-based design methods and as assessment of the inelastic displacement demand of the reinforcing steel. Results are also presented in a fragility context where a de minimis (inconsequential), irreparable damage and full fatigue fracture are defined to provide a probabilistic assessment of the fatigue damage incurred. This methodology can provide input into the overall assessment of fatigue demands and residual capacity.

Research papers, University of Canterbury Library

Well-validated liquefaction constitutive models are increasingly important as non-linear time history analyses become relatively more common in industry for key projects. Previous validation efforts of PM4Sand, a plasticity model specifically for liquefaction, have generally focused on centrifuge tests; however, pore pressure transducers installed at several free-field sites during the Canterbury Earthquake Sequence (CES) in Christchurch, New Zealand provide a relatively unique dataset to validate against. This study presents effective stress site response analyses performed in the finite difference software FLAC to examine the capability of PM4Sand to capture the generation of excess pore pressures during earthquakes. The characterization of the subsurface is primarily based on extensive cone penetration tests (CPT) carried out in Christchurch. Correlations based on penetration resistances are used to estimate soil parameters, such as relative density and shear wave velocity, which affect liquefaction behaviour. The resulting free-field FLAC model is used to estimate time histories of excess pore pressure, which are compared with records during several earthquakes in the CES to assess the suitability of PM4Sand.

Research papers, The University of Auckland Library

The sequence of earthquakes that has greatly affected Christchurch and Canterbury since September 2010 has again demonstrated the need for seismic retrofit of heritage unreinforced masonry buildings. Commencing in April 2011, the damage to unreinforced stone masonry buildings in Christchurch was assessed and recorded with the primary objective being to document the seismic performance of these structures, recognising that they constitute an important component of New Zealand’s heritage architecture. A damage statistics database was compiled by combining the results of safety evaluation placarding and post-earthquake inspections, and it was determined that the damage observed was consistent with observations previously made on the seismic performance of stone masonry structures in large earthquakes. Details are also given on typical building characteristics and on failure modes observed. Suggestions on appropriate seismic retrofit and remediation techniques are presented, in relation also to strengthening interventions that are typical for similar unreinforced stone masonry structures in Europe.

Research papers, University of Canterbury Library

Following a natural disaster, children are prone to various reactions and maladaptive responses as a result of exposure to a highly stressful and potentially traumatic event. Children’s responses can range from an acute stress response to post-traumatic-stress disorder or may fall somewhere in between. While responses to highly stressful events vary, a common finding is that children will develop sleep problems. This was found following the Christchurch September 2010 and February 2011 earthquakes. The purpose of this study was to investigate the context and phenomenology of the sleep problems of a small number of children experiencing these and the 2016 Kaikoura earthquakes, including possible mechanisms of effect. Participants were four families, including four mothers, one father and four children. The design of this study was unique. Interview data was subjected to a content analysis, extracted themes were organised according to an ecological-transactional framework and then the factors were subject to an analysis, based on the principles of clinical reasoning, in order to identify possible mechanisms of effect. Parents reported 16 different sleep problems across children, as well as other behaviours possibly indicative of post-traumatic stress response. In total, 34 themes and 26 interactions were extracted in relation to factors identified across participants about the children’s sleep and the families’ earthquake experiences. This demonstrated how complex it is to explore the development of sleep problems in the context of disaster. Key factors identified by parents that likely played a key role in the development and perpetuation of sleep problems included earthquake related anxiety, parental mental health and conflict, the child’s emotional and behavioural problems and other negative life events following the earthquakes. The clinical implications of the analysis included being aware that such families, may not have had access to specialized support around their children’s sleep. This was much needed due to the strain such problems place on the family, especially in a post-disaster community such as Christchurch.

Research papers, University of Canterbury Library

Following the Mw 6.2 Christchurch Earthquake on 22 February 2011, extensive ground cracking in loessial soils was reported in some areas of the Port Hills, southeast of central Christchurch. This study was undertaken to investigate the mechanisms of earthquake-induced ground damage on the eastern side of the Hillsborough Valley. A zone of extensional cracking up to 40m wide and 600m long was identified along the eastern foot-slope, accompanied by compression features and spring formation at the toe of the slope. An engineering geological and geomorphological model was developed for the eastern Hillsborough Valley that incorporates geotechnical investigation data sourced from the Canterbury Geotechnical Database (CGD), the findings of trenching and seismic refraction surveying carried out for this research, and interpretation of historical aerial photographs. The thickness and extent of a buried peat swamp at the base of the slope was mapped, and found to coincide with significant compression features. Ground cracking was found to have occurred entirely within loess-colluvium and to follow the apices of pre-1920s tunnel-gully fan debris at the southern end of the valley. The ground-cracking on the eastern side of the Hillsborough Valley is interpreted to have formed through tensile failure of the loess-colluvium. Testing was carried out to determine the tensile strength of Port Hills loess colluvium as a function of water content and density, in order to better understand the occurrence and distribution of the observed ground cracking. A comprehensive review of the soil tensile strength testing literature was undertaken, from which a test methodology was developed. Results show remoulded loess-colluvium to possess tensile strength of 7 - 28 kPa across the range of tested moisture contents (10-15%) and dry densities (1650-1900kg/m3). A positive linear relationship was observed between tensile strength and dry density, and a negative linear relationship between moisture content and tensile strength. The observed ground damage and available geotechnical information (inclinometer and piezometer records provided by the Earthquake Commission) were together used to interpret the mechanism(s) of slope movement that occurred in the eastern Hillsborough Valley. The observed ground damage is characteristic of translational movement, but without the development of lateral release scarps, or a basal sliding surface - which was not located during drilling. It is hypothesised that shear displacement has been accommodated by multiple slip surfaces of limited extent within the upper 10m of the slope. Movement has likely occurred within near-saturated colluvial units that have lost strength during earthquake shaking. The eastern Hillsborough Valley is considered to be an ‘incipient translational slide’, as both the patterns of damage and shearing are consistent with the early stages of such slide development. Sliding block analysis was utilised to understand how the eastern Hillsborough Valley may perform in a future large magnitude earthquake. Known cumulative displacements of ~0.3m for eastern Hillsborough Valley during the 2010-2011 Canterbury Earthquake Sequence were compared with modelled slope displacements to back-analyse a lower-bound yield acceleration of 0.2 - 0.25g. Synthetic broadband modelling for future Alpine and Hope Fault earthquakes indicates PGAs of approximately 0.08g for soil sites in the Christchurch area, as such, slope movement is unlikely to be reactivated by an Alpine Fault or Hope Fault earthquake. This does not take into account the possible role of strength loss due to excess pore pressure that may occur during these future events.

Research papers, University of Canterbury Library

This paper presents insights from recent advanced laboratory testing of undisturbed and reconstituted specimens of Christchurch silty-sands. The purpose of the testing was to establish the cyclic strength of silty-sands from sites in the Central Business District (CBD), where liquefaction was observed in 4 September 2010, 22 February 2011, and 13 June 2011. Similar overall strengths were obtained from undisturbed and reconstituted tests prepared at similar densities, albeit with higher variability for the reconstituted specimens. Reconstituted specimens exhibited distinctly different response in terms of lower compressibility during initial loading cycles, and exhibited a more brittle response when large strains were mobilised, particularly for samples with high fines content. Given the lower variability in natural sample response and the possibility of age-related strength to be significant for sites not subjected to earthquakes, high quality undisturbed samples are recommended over the use of reconstituted specimens to establish the cyclic strength of natural sands.

Research papers, University of Canterbury Library

The Canterbury earthquakes caused huge amounts of damage to Christchurch and the surrounding area and presented a very challenging situation for both insurers and claimants. While tourism has suffered significant losses as a result, particularly due to the subsequent decrease in visitor numbers, the Canterbury region was very fortunate to have high levels of insurance coverage. This report, based on data gathered from tourism operators on the ground in Canterbury, looks at how this sector has been affected by the quakes, claims patterns, and the behaviour and perceptions of tourism operators about insurance.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in Christchurch and surrounding suburbs during the recent Canterbury Earthquake Sequence (2010-2011) caused significant damage to structures and lifelines located in close proximity to streams and rivers. Simplified methods used in current engineering practice for predicting lateral ground displacements exhibit a high degree of epistemic uncertainty, but provide ‘order of magnitude’ estimates to appraise the hazard. We wish to compare model predictions to field measurements in order to assess the model’s capabilities and limitations with respect to Christchurch conditions. The analysis presented focuses on the widely-used empirical model of Youd et al. (2002), developed based on multi-linear regression (MLR) of case history data from lateral spreading occurrence in Japan and the US. Two issues arising from the application of this model to Christchurch were considered: • Small data set of Standard Penetration Test (SPT) and soil gradation indices (fines content FC, and mean grain size, D50) required for input. We attempt to use widely available CPT data with site specific correlations to FC and D50. • Uncertainty associated with the model input parameters and their influence on predicted displacements. This has been investigated for a specific location through a sensitivity analysis.

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/

Research papers, University of Canterbury Library

This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.

Research papers, Victoria University of Wellington

The standard way in which disaster damages are measured involves examining separately the number of fatalities, of injuries, of people otherwise affected, and the financial damage that natural disasters cause. Here, we implement a novel way to aggregate these separate measures of disaster impact and apply it to two recent catastrophic events: the Christchurch (New Zealand) earthquakes and the Greater Bangkok (Thailand) floods of 2011. This new measure, which is similar to the World Health Organization’s calculation of Disability Adjusted Life Years (DALYs) lost from the burden of diseases and injuries, is described in detail in Noy (2014). It allows us to conclude that New Zealand lost 180 thousand lifeyears as a result of the 2011 events, and Thailand lost 2,644 thousand years. In per capita terms, the loss is similar, with both countries losing about 15 days per person due to the 2011 catastrophic events in these two countries. We also compare these events to other potentially similar events.

Research papers, University of Canterbury Library

This thesis is concerned with modelling rockfall parameters associated with cliff collapse debris and the resultant “ramp” that formed following the high peak ground acceleration (PGA) events of 22 February 2011 and 13 June 2011. The Christchurch suburb of Redcliffs, located at the base of the Port Hills on the northern side of Banks Peninsula, New Zealand, is comprised of Miocene-age volcanics with valley-floor infilling marine sediments. The area is dominated by basaltic lava flows of the Mt Pleasant Formation, which is a suite of rocks forming part of the Lyttelton Volcanic Group that were erupted 11.0-10.0Ma. Fresh exposure enabled the identification of a basaltic ignimbrite unit at the study site overlying an orange tuff unit that forms a marker horizon spanning the length of the field area. Prior to this thesis, basaltic ignimbrite on Banks Peninsula has not been recorded, so descriptions and interpretations of this unit are the first presented. Mapping of the cliff face by remote observation, and analysis of hand samples collected from the base of the debris slopes, has identified a very strong (>200MPa), columnar-jointed, welded unit, and a very weak (<5MPa), massive, so-called brecciated unit that together represent the end-member components of the basaltic ignimbrite. Geochemical analysis shows the welded unit is picrite basalt, and the brecciated unit is hawaiite, making both clearly distinguishable from the underlying trachyandesite tuff. RocFall™ 4.0 was used to model future rockfalls at Redcliffs. RocFall™ is a two-dimensional (2D), hybrid, probabilistic modelling programme for which topographical profile data is used to generate slope profiles. GNS Science collected the data used for slope profile input in March 2011. An initial sensitivity analysis proved the Terrestrial Laser Scan (TLS)-derived slope to be too detailed to show any results when the slope roughness parameter was tested. A simplified slope profile enabled slope roughness to be varied, however the resulting model did not correlate with field observations as well. By using slope profile data from March 2011, modelled rockfall behaviour has been calibrated with observed rockfall runout at Redcliffs in the 13 June 2011 event to create a more accurate rockfall model. The rockfall model was developed on a single slope profile (Section E), with the chosen model then applied to four other section lines (A-D) to test the accuracy of the model, and to assess future rockfall runout across a wider area. Results from Section Lines A, B, and E correlate very well with field observations, with <=5% runout exceeding the modelled slope, and maximum bounce height at the toe of the slope <=1m. This is considered to lie within observed limits given the expectation that talus slopes will act as a ramp on which modelled rocks travel further downslope. Section Lines C and D produced higher runout percentage values than the other three section lines (23% and 85% exceeding the base of the slope, respectively). Section D also has a much higher maximum bounce height at the toe of the slope (~8.0m above the slope compared to <=1.0m for the other four sections). Results from modelling of all sections shows the significance of the ratio between total cliff height (H) and horizontal slope distance (x), and of maximum drop height to the top of the talus (H*) and horizontal slope distance (x). H/x can be applied to the horizontal to vertical ratio (H:V) as used commonly to identify potential slope instability. Using the maximum value from modelling at Redcliffs, the future runout limit can be identified by applying a 1.4H:1V ratio to the remainder of the cliff face. Additionally, the H*/x parameter shows that when H*/x >=0.6, the percentage of rock runout passing the toe of the slope will exceed 5%. When H*/x >=0.75, the maximum bounce height at the toe of the slope can be far greater than when H*/x is below this threshold. Both of these parameters can be easily obtained, and can contribute valuable guideline data to inform future land-use planning decisions. This thesis project has demonstrated the applicability of a 2D probabilistic-based model (RocFall™ 4.0) to evaluate rockfall runout on the talus slope (or ramp) at the base of ~35-70m high cliff with a basaltic ignimbrite source. Limitations of the modelling programme have been identified, in particular difficulties with adjusting modelled roughness of the slope profile and the inability to consider fragmentation. The runout profile using RocFall™ has been successfully calibrated against actual profiles and some anomalous results have been identified.

Research papers, University of Canterbury Library

The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The aim of this multidisciplinary research was to retrospectively analyse the gastroenteritis prevalence following the February 22, 2011 earthquake in Christchurch. The first focus was to assess whether earthquake-induced infrastructure damage, liquefaction, and gastroenteritis agents spatially explained the recorded gastroenteritis cases over the period of 35 days following the February 22, 2011 earthquake in Christchurch. The gastroenteritis agents considered in this study were Escherichia coli found in the drinking water supply (MPN/100mL) and Non-Compliant Free Associated Chlorine (FAC-NC) (less than <0.02mg/L). The second focus was the protocols that averted a gastroenteritis outbreak at three Emergency Centres (ECs): Burnside High School Emergency Centre (BEC); Cowles Stadium Emergency Centre (CEC); and Linwood High School Emergency Centre (LEC). Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols and indirect themes included type of EC building (school or a sports stadium), and EC staff. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. This research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. A damage profile was created by amalgamating different types of damage for the considered factors for each Census Area Unit (CAU) in Christchurch. The damage profile enabled the application of a variety of statistical methods which included Moran’s I , Hot Spot (HS) analysis, Spearman’s Rho, and Besag–York–Mollié Model using a range of software. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. The ECs were selected to represent the Christchurch area, and were situated where potential for gastroenteritis was high. BEC represented the western side of Christchurch; whilst, CEC and LEC represented the eastern side, where the potential for gastroenteritis was high according to the outputs of the quantitative spatial modelling. Qualitative analysis from the interviews at the ECs revealed that evacuees were arriving at the ECs with gastroenteritis-like symptoms. Participants believed that those symptoms did not originate at the ECs. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols that included prolific use of hand sanitisers; surveillance; and the services offered. Indirect themes included the EC layout, type of EC building (school or a sports stadium), and EC staff. Indirect themes governed the quality and sustainability of the direct themes implemented, which in turn averted gastroenteritis outbreaks at the ECs. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. It was concluded that gastroenteritis point prevalence following the February 22, 2011 earthquake could not be solely explained by earthquake-induced infrastructure damage, liquefaction, and gastroenteritis causative agents alone. However, this research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Creating a damage profile for each CAU and using spatial data analysis can isolate vulnerable areas, and qualitative data analysis provides localised information. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally.

Research papers, Victoria University of Wellington

This dissertation contains three essays on the impact of unexpected adverse events on student outcomes. All three attempt to identify causal inference using plausibly exogenous shocks and econometric tools, applied to rich administrative data.  In Chapter 2, I present evidence of the causal effects of the 2011 Christchurch earthquake on tertiary enrolment and completion. Using the shock of the 2011 earthquake on high school students in the Canterbury region, I estimate the effect of the earthquake on a range of outcomes including tertiary enrolment, degree completion and wages. I find the earthquake causes a substantial increase in tertiary enrolment, particularly for low ability high school leavers from damaged schools. However, I find no evidence that low ability students induced by the earthquake complete a degree on time.  In Chapter 3, I identify the impact of repeat disaster exposure on university performance, by comparing outcomes for students who experience their first earthquake while in university, to outcomes for students with prior earthquake exposure. Using a triple-differences estimation strategy with individual-by-year fixed effects, I identify a precise null effect, suggesting that previous experience of earthquakes is not predictive of response to an additional shock two years later.  The final chapter investigates the impact of injuries sustained in university on academic performance and wages, using administrative data including no-fault insurance claims, emergency department attendance and hospital admissions, linked with tertiary enrolment. I find injuries, including minor injuries, have a negative effect on re-enrolment, degree completion and grades in university.

Research papers, University of Canterbury Library

This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).

Research papers, Lincoln University

Prior to the devastating 2010 and 2011 earthquakes, parts of the CBD of Christchurch, New Zealand were undergoing revitalisation incorporating aspects of adaptive reuse and gentrification. Such areas were often characterised by a variety of bars, restaurants, and retail outlets of an “alternative” or “bohemian” style. These early 20th century buildings also exhibited relatively low rents and a somewhat chaotic and loosely planned property development approach by small scale developers. Almost all of these buildings were demolished following the earthquakes and a cordon placed around the CBD for several years. A paper presented at the ERES conference in 2013 presented preliminary results, from observation of post-earthquake public meetings and interviews with displaced CBD retailers. This paper highlighted a strongly held fear that the rebuild of the central city, then about to begin, would result in a very different style and cost structure from that which previously existed. As a result, permanent exclusion from the CBD of the types of businesses that previously characterised the successfully revitalised areas would occur. Five years further on, new CBD retail and office buildings have been constructed, but large areas of land between them remain vacant and the new buildings completed are often having difficulty attracting tenants. This paper reports on the further development of this long-term Christchurch case study and examines if the earlier predictions of the displaced retailers are coming true, in that a new CBD that largely mimics a suburban mall in style and tenancy mix, inherently loses some of its competitive advantage?

Research papers, University of Canterbury Library

Live monitoring data and simple dynamic reduced-order models of the Christchurch Women’s Hospital (CWH) help explain the performance of the base isolation (BI) system of the hospital during the series of Canterbury earthquakes in 2011-2012. A Park-Wen-Ang hysteresis model is employed to simulate the performance of the BI system and results are compared to measured data recorded above the isolation layer and on the 6th story. Simplified single, two and three degree of freedom models (SDOF, 2DOF and 3DOF) show that the CWH structure did not behave as an isolated but as a fixed-base structure. Comparisons of accelerations and deflections between simulated and monitored data show a good match for isolation stiffness values of approximately two times of the value documented in the design specification and test protocol. Furthermore, an analysis of purely measured data revealed very little to no relative motion across the isolators for large events of moment magnitude scale (Mw) 5.8 and 6.0 that occurred within 3 hours of each other on December 23, 2011. One of the major findings is that the BI system during the seismic events on December 23, 2011 did not yield and that the superstructure performed as a fixed-base building, indicating a need to reevaluate the analysis, design and implementation of these structures.

Research papers, University of Canterbury Library

This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.

Research papers, Lincoln University

This report presents research on the affects of the Ōtautahi/Christchurch earthquakes of 2010 to 2012 on the city’s Tangata Whaiora community, ‘people seeking health’ as Māori frame mental health clients. Drawing on the voices of 39 participants of a Kaupapa Māori provider (Te Awa o te Ora), this report presents extended quotes from Tangata Whaiora, their support staff (many of whom are Tangata Whaiora), and managers as they speak of the events, their experiences, and support that sustained them in recoveries of well-being through the worse disaster in Aotearoa/New Zealand in three generations. Ōtautahi contains a significant urban Māori population, many living in suburbs that were seriously impacted by the earthquakes that began before dawn on September 4th, 2010, and continued throughout 2011 and 2012. The most damaging event occurred on February 22nd, 2011, and killed 185 people and severely damaged the CBD as well as many thousands of homes. The thousands of aftershocks delayed the rebuilding of homes and infrastructure and exacerbated the stress and dislocation felt by residents. The tensions and disorder continue for numerous residents into 2014 and it will be many years before full social and physical recovery can be expected. This report presents extended excerpts from the interviews of Tangata Whaiora and their support staff. Their stories of survival through the disaster reinforce themes of community and whānau while emphasising the reality that a significant number of Tangata Whaiora do not or cannot draw on this supports. The ongoing need for focused responses in the area of housing and accommodation, sufficiently resourced psycho-social support, and the value of Kaupapa Māori provision for Māori and non-Māori mental health clients cannot be overstated. The report also collates advice from participants to other Tangata Whaiora, their whānau, providers and indeed all residents of places subject to irregular but potentially devastating disaster. Much of this advice is relevant for more daily challenges and should not be underestimated despite its simplicity.

Research papers, Lincoln University

The disastrous earthquakes that struck Christchurch in 2010 and 2011 seriously impacted on the individual and collective lives of Māori residents. This paper continues earlier, predominantly qualitative research on the immediate effects on Māori by presenting an analysis of a survey carried out 18 months after the most destructive event, on 22 February 2011. Using a set-theoretic approach, pathways to Māori resilience are identified, emphasising the combination of whānau connectivity and high incomes in those who have maintained or increased their wellbeing post-disaster. However, the results show that if resilience is used to describe a “bounce back” in wellbeing, Māori are primarily enduring the post-disaster environment. This endurance phase is a precursor to any resilience and will be of much longer duration than first thought. With continued uncertainty in the city and wider New Zealand economy, this endurance may not necessarily lead to a more secure environment for Māori in the city.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.

Research papers, University of Canterbury Library

This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.

Research papers, Lincoln University

The Christchurch earthquakes brought to an abrupt halt a process of adaptive reuse and gentrification that was underway in the south eastern corner of the central business district. The retail uses that were a key to the success of this area pre-earthquake could be characterised as small, owner operated, quirky, bohemian, chaotic and relatively low rent. This research reports on the progress of a long term, comprehensive case study that follows the progress of these retailers both before and after the earthquakes. Findings include the immediate post-earthquake intentions to resume business in the same location as soon as possible were thwarted by government imposed cordons of the CBD that were only lifted nearly three years later. But, businesses were resilient and generally reinvented themselves quickly in alternative suburban locations where government “rebuild” restrictions were absent. It remains to be seen if this type of retail will ever return to the CBD as government imposed plans and the rents demanded for retail space in new buildings appear to preclude small owner-operated businesses.

Research papers, University of Canterbury Library

Organisations play a vital role in assisting communities to recover from disasters. They are the key providers of goods and services needed in both response and recovery efforts. They provide the employment which both anchors people to place and supports the taxation base to allow for necessary recovery spending. Finally, organisations are an integral part of much day to day functioning contributing immensely to people’s sense of ‘normality’ and psychological wellbeing. Yet, despite their overall importance in the recovery process, there are significant gaps in our existing knowledge with regard to how organisations respond and recover following disaster. This research fills one part of this gap by examining collaboration as an adaptive strategy enacted by organisations in the Canterbury region of New Zealand, which was heavily impacted by a series of major earthquakes, occurring in 2010 and 2011. Collaboration has been extensively investigated in a variety of settings and from numerous disciplinary perspectives. However, there are few studies that investigate the role of collaborative approaches to support post-disaster business recovery. This study investigates the type of collaborations that have occurred and how they evolved as organisations reacted to the resource and environmental change caused by the disaster. Using data collected through semi-structured interviews, survey and document analysis, a rich and detailed picture of the recovery journey is created for 26 Canterbury organisations including 14 collaborators, six non-traders, five continued traders and one new business. Collaborations included two or more individual businesses collaborating along with two multi-party, place based projects. Comparative analysis of the organisations’ experiences enabled the assessment of decisions, processes and outcomes of collaboration, as well as insight into the overall process of business recovery. This research adopted a primarily inductive, qualitative approach, drawing from both grounded theory and case study methodologies in order to generate theory from this rich and contextually situated data. Important findings include the importance of creating an enabling context which allows organisations to lead their own recovery, the creation of a framework for effective post-disaster collaboration and the importance of considering both economic and other outcomes. Collaboration is found to be an effective strategy enabling resumption of trade at a time when there seemed few other options available. While solving this need, many collaborators have discovered significant and unexpected benefits not just in terms of long term strategy but also with regard to wellbeing. Economic outcomes were less clear-cut. However, with approximately 70% of the Central Business District demolished and rebuilding only gaining momentum in late 2014, many organisations are still in a transition stage moving towards a new ‘normal’.