This thesis is concerned with springs that appeared in the Hillsborough, Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and which have continued to discharge groundwater to the surface to the present time. Investigations have evolved, measurements of discharge at selected sites, limited chemical data on anions and isotope analysis. The springs are associated with earthquake generated fissures (extensional) and compression zones, mostly in loess-colluvium soils of the valley floor and lower slopes. Extensive peat swamps are present in the Hillsborough valley, with a groundwater table at ~1m below ground. The first appearance of the ‘new’ springs took place following the Mw 7.1 Darfield Earthquake on 4 September 2010, and discharges increased both in volume and extent of the Christchurch Mw 6.3 Earthquake of 22 February 2011. Five monitored sites show flow rates in the range of 4.2-14.4L/min, which have remained effectively constant for the duration of the study (2014-2015). Water chemistry analysis shows that the groundwater discharges are sourced primarily from volcanic bedrocks which underlies the valley at depths ≤50m below ground level. Isotope values confirm similarities with bedrock-sourced groundwater, and the short term (hours-days) influence of extreme rainfall events. Cyclone Lusi (2013-2014) affects were monitored and showed recovery of the bedrock derived water signature within 72 hours. Close to the mouth of the valley sediments interfinger with Waimakiriri River derived alluvium bearing a distinct and different isotope signature. Some mixing is evident at certain locations, but it is not clear if there is any influence from the Huntsbury reservoir which failed in the Port Hills Earthquake (22 February 2011) and stored groundwater from the Christchurch artesian aquifer system (Riccarton Gravel).
With the occurrence of natural disasters on the increase, major cities around the world face the potential of complete loss of infrastructure due to design guidelines that do not consider resilience in the design. With the February 22nd, 2011 earthquake in Christchurch, being the largest insured event, lessons learnt from the rebuild will be vital for the preparation of future disasters. Therefore the objective of this research is to understand the financial implications of the changes to the waste water design guidelines used throughout the five year rebuild programme of works. The research includes a study of the SCIRT alliance model selected for the delivery that is flexible enough to handle changes in the design with minimal impact on the direct cost of the rebuild works. The study further includes the analysis and compares the impact of the three different guidelines on maintenance and replacement cost over the waste water pipe asset life. The research concludes that with the varying ground conditions in Christchurch and also the wide variety of materials in use in the waste water network up to the start of the CES, the rebuild was not a ‘one size fits all’ approach.
After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner’s insurance. Most people chose the second option. Using data from LINZ combined with data from StatNZ, this project empirically investigates what led people to choose this second option, and what were the implications of these choices for the owners’ wealth and income.
Children are often overlooked in the aftermath of a natural disaster, and children’s use of coping strategies plays an important part in their post-disaster adaptation (Vernberg, La Greca, Silverman, & Prinstein, 1996). The aim of this qualitative study was to explore the coping strategies of children with adequate self-regulation skills and minimal behaviour problems, living in Christchurch following the major 2010 and 2011 earthquakes. This aim was achieved through the use of semi-structured interviews with five seven-year-old children, their parents, and their teachers. These interviews were analysed using Directed Content Analysis and results showed that children most often reported using active and adaptive coping strategies, followed by avoidant strategies. Results in the current literature regarding children’s coping suggest that children exposed to natural disasters are able to utilise strategies that involve some personal control over their environment and emotions, through the use of active and adaptive coping strategies. Findings from this study contribute to the current understanding of children’s use of coping strategies when faced with commonly occurring childhood upsets. Further research is required regarding the outcomes associated with the use of effective coping strategies following traumatic events.
As the future of the world’s oil reserves becomes progressively more uncertain, it is becoming increasingly important that steps are taken to ensure that there are viable, attractive alternatives to travel by private motor vehicle. As with many of New Zealand’s major urban centres, Christchurch is still exceptionally reliant on private motor vehicles; although a significant proportion of the population indicate that they would like to cycle more, cycling is still an underutilised mode of transport. Following a series of fatal earthquakes that struck the city in 2010 and 2011, there has been the need to significantly redevelop much of the city’s horizontal infrastructure – subsequently providing the perfect platform for significant changes to be made to the road network. Many of the key planning frameworks governing the rebuild process have identified the need to improve Christchurch’s cycling facilities in order to boost cycling numbers and cyclist safety. The importance of considering future growth and travel patterns when planning for transport infrastructure has been highlighted extensively throughout literature. Accordingly, this study sought to identify areas where future cycle infrastructure development would be advantageous based on a number of population and employment projections, and likely future travel patterns throughout the city. Through the use of extensive GIS analysis, future population growth, employment and travel patterns for Christchurch city were examined in order to attain an understanding of where the current proposed major cycleways network could be improved, or extended. A range of data and network analysis were used to derive likely travel patterns throughout Christchurch in 2041. Trips were derived twice, once with a focus on simply finding the shortest route between each origin and destination, and then again with a focus on cyclist safety and areas where cyclists were unlikely to travel. It was found that although the proposed major cycleways network represents a significant step towards improving the cycling environment in Christchurch, there are areas of the city that will not be well serviced by the current proposed network in 2041. These include a number of key residential growth areas such as Halswell, Belfast and Prestons, along with a number of noteworthy key travel zones, particularly in areas close to the central city and key employment areas. Using network analysis, areas where improvements or extensions to the proposed network would be most beneficial were identified, and a number of potential extensions in a variety of areas throughout the city were added to the network of cycle ways. Although it has been found that filling small gaps in the network can have considerable positive outcomes, results from the prioritisation analysis suggested that initially in Christchurch demand is likely to be for more substantial extensions to the proposed major cycleways network.
The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.
The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.
The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.
Active faults capable of generating highly damaging earthquakes may not cause surface rupture (i.e., blind faults) or cause surface ruptures that evade detection due to subsequent burial or erosion by surface processes. Fault populations and earthquake frequency-‐magnitude distributions adhere to power laws, implying that faults too small to cause surface rupture but large enough to cause localized strong ground shaking densely populate continental crust. The rupture of blind, previously undetected faults beneath Christchurch, New Zealand in a suite of earthquakes in 2010 and 2011, including the fatal 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake and other large aftershocks, caused a variety of environmental impacts, including major rockfall, severe liquefaction, and differential surface uplift and subsidence. All of these effects occurred where geologic evidence for penultimate effects of the same nature existed. To what extent could the geologic record have been used to infer the presence of proximal, blind and / or unidentified faults near Christchurch? In this instance, we argue that phenomena induced by high intensity shaking, such as rock fragmentation and rockfall, revealed the presence of proximal active faults in the Christchurch area prior to the recent earthquake sequence. Development of robust earthquake shaking proxy datasets should become a higher scientific priority, particularly in populated regions.
The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.
This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30
The objective of the study presented herein is to assess three commonly used CPT-based liquefaction evaluation procedures and three liquefaction severity index frameworks using data from the 2010–2011 Canterbury earthquake sequence. Specifically, post-event field observations, ground motion recordings, and results from a recently completed extensive geotechnical site investigation programme at selected strong motion stations (SMSs) in the city of Christchurch and surrounding towns are used herein. Unlike similar studies that used data from free-field sites, accelerogram characteristics at the SMS locations can be used to assess the performance of liquefaction evaluation procedures prior to their use in the computation of surficial manifestation severity indices. Results from this study indicate that for cases with evidence of liquefaction triggering in the accelerograms, the majority of liquefaction evaluation procedures yielded correct predictions, regardless of whether surficial manifestation of liquefaction was evident or not. For cases with no evidence of liquefaction in the accelerograms (and no observed surficial evidence of liquefaction triggering), the majority of liquefaction evaluation procedures predicted liquefaction was triggered. When all cases are used to assess the performance of liquefaction severity index frameworks, a poor correlation is shown between the observed severity of liquefaction surface manifestation and the calculated severity indices. However, only using those cases where the liquefaction evaluation procedures yielded correct predictions, there is an improvement in the correlation, with the Liquefaction Severity Number (LSN) being the best performing of the frameworks investigated herein. However scatter in the relationship between the observed and calculated surficial manifestation still remains for all liquefaction severity index frameworks.
The 2011, 6.3 magnitude Christchurch earthquake in New Zealand caused considerable structural damage. It is believed that this event has now resulted in demolition of about 65-70% of the building stock in the Central Business District (CBD), significantly crippling economic activities in the city of Christchurch. A major concern raised from this event was adequacy of the current seismic design practice adopted for reinforced concrete walls due to their poor performance in modern buildings. The relatively short-duration earthquake motion implied that the observed wall damage occurred in a brittle manner despite adopting a ductile design philosophy. This paper presents the lessons learned from the observed wall damage in the context of current state of knowledge in the following areas: concentrating longitudinal reinforcement in wall end regions; determining wall thickness to prevent out-of-plane wall buckling; avoiding lap splices in plastic hinge zones; and quantifying minimum vertical reinforcement. http://www.2eceesistanbul.org/
None
Disasters, either man-made or natural, are characterised by a multiplicity of factors including loss of property, life, environmental degradation, and psychosocial malfunction of the affected community. Although much research has been undertaken on proactive disaster management to help reduce the impacts of natural and man-made disasters, many challenges still remain. In particular, the desire to re-house the affected as quickly as possible can affect long-term recovery if a considered approach is not adopted. Promoting recovery activities, coordination, and information sharing at national and international levels are crucial to avoid duplication. Mannakkara and Wilkinson’s (2014) modified “Build Back Better” (BBB) concept aims for better resilience by incorporating key resilience elements in post-disaster restoration. This research conducted an investigation into the effectiveness of BBB in the recovery process after the 2010–2011 earthquakes in greater Christchurch, New Zealand. The BBB’s impact was assessed in terms of its five key components: built environment, natural environment, social environment, economic environment, and implementation process. This research identified how the modified BBB propositions can assist in disaster risk reduction in the future, and used both qualitative and quantitative data from both the Christchurch and Waimakariri recovery processes. Semi-structured interviews were conducted with key officials from the Christchurch Earthquake Recovery Authority, and city councils, and supplemented by reviewing of the relevant literature. Collecting data from both qualitative and quantitative sources enabled triangulation of the data. The interviewees had directly participated in all phases of the recovery, which helped the researcher gain a clear understanding of the recovery process. The findings led to the identification of best practices from the Christchurch and Waimakariri recovery processes and underlined the effectiveness of the BBB approach for all recovery efforts. This study contributed an assessment tool to aid the measurement of resilience achieved through BBB indicators. This tool provides systematic and structured approach to measure the performance of ongoing recovery.
The seismic tremor that shook Christchurch on February 22, 2011, not only shattered buildings but also the spirit of the city’s residents. Amidst the ruins, this design-focused thesis unravels two intertwining narratives, each essential to the city’s resurrection. At its core, this thesis probes the preservation of Christchurch’s memory and character, meticulously chronicling the lost heritage architecture and the subsequent urban metamorphosis. Beyond bricks and mortar, it also confronts the silent aftershocks - the pervasive mental health challenges stemming from personal losses and the disfigured cityscape. As a native of Christchurch, intimately connected to its fabric, my lens reflects not just on the architectural reconstruction but also on the emotional reconstruction. My experience as an autistic individual, a recently discovered facet of my identity, infuses this design journey with a distinct prism through which I perceive and interact with the world. The colourful sketches that drive the design process aren’t mere illustrations but manifestations of my interpretation of spaces and concepts, evoking joy and vitality—a testament to embracing diversity in design. Drawing parallels between healing my own traumas with my colourful and joyful neurodivergent worldview, I’ve woven this concept into proposals aimed at healing the city through whimsy, joy, and vibrant colours. Personal experiences during and post-earthquakes profoundly shape my design proposals. Having navigated the labyrinth of my own mental health amid the altered cityscape, I seek avenues for reconciliation, both personal and communal. The vibrant sketches and designs presented in this thesis encapsulate this vision—a fusion of vivid, unconventional interpretations and a dedication to preserving the essence of the original cityscape while still encouraging movement into the future.
This topic was chosen in response to the devastation caused to Cathedral Square, Christchurch, New Zealand following earthquakes in 2010 and 2011. Working amongst the demolition bought to attention questions about how to re-conceive the square within the rebuilt city. In particular, it raised questions as to how a central square could be better integrated and experienced as a contemporary addition to Christchurch city. This thesis seeks to investigate the ways in which central squares can be better integrated with the contemporary city and how New Urbanist design principles can contribute toward this union. The research principally focuses on the physical and spatial integration of the square with the contemporary city. A drawing-based analysis of select precedent case studies helped to determine early on that overall integration of the contemporary square could be attributed to several interdependent criteria. The detailed studies are supplemented further with literature-based research that narrowed the criteria to five integrative properties. These are: identity, scale and proportion, use, connectivity and natural landscape. These were synthesised, in part, from the integrative New Urbanist movement and the emerging integrative side of the more contemporary Post Urbanist movement. The literature-based research revealed that a more inclusive approach toward New Urbanist and Post Urbanist design methodologies may also produce a more integrated and contemporary square. Three design case studies, using the redesign of Cathedral Square, were undertaken to test this hypothesis. The case studies found that overall, integration was reliant on a harmonious balance between the five integrative properties, concluding that squares can be better integrated with the contemporary city. Further testing of the third concept, which embraced an allied New Urbanist / Post Urbanist approach to design, found that New Urbanism was limited in its contribution toward the integration of the square.
The devastating magnitude M6.3 earthquake, that struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011, caused widespread damage to the lifeline systems. Following the event, the Natural Hazard Research Platform (NHRP) of New Zealand funded a short-term project “Recovery of Lifelines” aiming to: 1) coordinate the provision of information to meet lifeline short-term needs; and to 2) facilitate the accessibility to lifelines of best practice engineering details, along with hazards and vulnerability information already available from the local and international scientific community. This paper aims to briefly summarise the management of the recovery process for the most affected lifelines systems, including the electric system, the road, gas, and the water and wastewater networks. Further than this, the paper intends to discuss successes and issues encountered by the “Recovery of Lifelines” NHRP project in supporting lifelines utilities.
The Mw 7.1 Darfield earthquake generated a ~30 km long surface rupture on the Greendale Fault and significant surface deformation related to related blind faults on a previously unrecognized fault system beneath the Canterbury Plains. This earthquake provided the opportunity for research into the patterns and mechanisms of co-seismic and post-seismic crustal deformation. In this thesis I use multiple across-fault EDM surveys, logic trees, surface investigations and deformation feature mapping, seismic reflection surveying, and survey mark (cadastral) re-occupation using GPS to quantify surface displacements at a variety of temporal and spatial scales. My field mapping investigations identified shaking and crustal displacement-induced surface deformation features south and southwest of Christchurch and in the vicinity of the projected surface traces of the Hororata Blind and Charing Cross Faults. The data are consistent with the high peak ground accelerations and broad surface warping due to underlying reverse faulting on the Hororata Blind Fault and Charing Cross Fault. I measured varying amounts of post-seismic displacement at four of five locations that crossed the Greendale Fault. None of the data showed evidence for localized dextral creep on the Greendale Fault surface trace, consistent with other studies showing only minimal regional post-seismic deformation. Instead, the post-seismic deformation field suggests an apparent westward translation of northern parts of the across-fault surveys relative to the southern parts of the surveys that I attribute to post-mainshock creep on blind thrusts and/or other unidentified structures. The seismic surveys identified a deformation zone in the gravels that we attribute to the Hororata Blind Fault but the Charing Cross fault was not able to be identified on the survey. Cadastral re-surveys indicate a deformation field consistent with previously published geodetic data. We use this deformation with regional strain rates to estimate earthquake recurrence intervals of ~7000 to > 14,000 yrs on the Hororata Blind and Charing Cross Faults.
Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.
In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.
Cats all over the world hunt wild animals and can contribute to the extinction of threatened species. In New Zealand, around half of all households have at least one cat. When cats live close to a natural area, such as a wetland, they may have impacts on native species. A previous study on the movements and hunting behaviour of domestic (house) cats around the Travis Wetland, Christchurch, New Zealand during 2000-2001 raised concerns about the effects of cats on the local skink population, as skinks were a frequent prey item. My study is a comparison to the prior study, to determine if impacts have changed alongside changes in human populations in the area post-earthquake. The domestic cat population in the area was estimated by a household survey in March-April 2018. For a 6 month period from March-September 2018, 26 households recorded prey brought home by their 41 cats. During April-July 2018, 14 cats wore Global Positioning System (GPS) devices for 7 days each to track their movements. Skink abundance was measured with pitfall trapping over 20 days in February 2018. There were more households in the area in 2018 than there were in 2000, but the numbers of cats had decreased. In the 196 ha study area around Travis Wetland, the domestic cat population was estimated at 429 cats, down from the previous 494. Most of the cats were free roaming, but the majority had been desexed and many were mostly seen at home. A total of 42 prey items were reported from 26 households and 41 cats over 6 months. Of these, 62% were rodents, 26% were exotic birds, and 12% were native birds. There were no native skinks, other mammals, or other vertebrates such as fish and amphibians (invertebrates were not included in this study). Eight male and six female cats were tracked by GPS. Home range sizes for the 100% minimum convex polygons (MCPs) ranged from 1.34 to 9.68 ha (mean 4.09 ha, median 3.54 ha). There were 9/14 (64%) cats that entered the edge of the wetland. Males had significantly larger home range areas at night and in general compared with females. However, age and distance of the cat’s household to the wetland did not have a significant effect on home range size and there was no significant correlation between home range size and prey retrieved. In 20 days of skink trapping, 11 Oligosoma polychroma were caught. The estimated catch rate was not significantly different from an earlier study on skink abundance in Travis Wetland. The apparently low abundance of skinks may have been the result of successful wetland restoration creating less suitable skink habitat, or of other predators other than cats. In the future, increased education should be provided to the public about ways to increase wildlife in their area. This includes creating lizard friendly habitat in their gardens and increasing management for cats. Generally, only a few cats bring home prey often, and these select cats should be identified in initial surveys and included in further studies. In New Zealand, until management programmes can target all predators in urban areas, domestic cats could stay out at night and inside during the day to help decrease the abundance of rodents at night and reduce the number of birds and lizards caught during the day.
A large number of businesses that used to be in the centre of Christchurch relocated after the earthquakes. Are they satisfied with their new locations and do they intend to return to the central city? We questioned 209 relocated businesses about their relocation history, present circumstances and future intentions. Many businesses were content with their new premises, despite having encountered a range of problems; those businesses that were questioned later in our survey period were more content. The average business in our sample rated the chances of moving back to the central city as around 50 %, but this varies with the type of business. Building height did not emerge as a major issue, but rents may be. The mix of types of business is likely to be different in the new city centre.
Liquefaction-induced lateral spreading during the 2011 Christchurch earthquake in New Zealand was severe and extensive, and data regarding the displacements associated with the lateral spreading provides an excellent opportunity to better understand the factors that influence these movements. Horizontal displacements measured from optical satellite imagery and subsurface data from the New Zealand Geotechnical Database (NZGD) were used to investigate four distinct lateral spread areas along the Avon River in Christchurch. These areas experienced displacements between 0.5 and 2 m, with the inland extent of displacement ranging from 100 m to over 600 m. Existing empirical and semi-empirical displacement models tend to under estimate displacements at some sites and over estimate at others. The integrated datasets indicate that the areas with more severe and spatially extensive displacements are associated with thicker and more laterally continuous deposits of liquefiable soil. In some areas, the inland extent of displacements is constrained by geologic boundaries and geomorphic features, as expressed by distinct topographic breaks. In other areas the extent of displacement is influenced by the continuity of liquefiable strata or by the presence of layers that may act as vertical seepage barriers. These observations demonstrate the need to integrate geologic/geomorphic analyses with geotechnical analyses when assessing the potential for lateral spreading movements.
This article presents a subset of findings from a larger mixed methods CEISMIC1 funded study of twenty teachers’ earthquake experiences and post-earthquake adjustment eighteen months after a fatal earthquake struck Christchurch New Zealand, in the middle of a school day (Geonet Science, 2011; O’Toole & Friesen, 2016). This earthquake was a significant national and personal disaster with teachers’ emotional self-management as first responders being crucial to the students’ immediate safety (O’Toole & Friesen, 2016). At the beginning of their semi-structured interviews conducted eighteen months later, the teachers shared their earthquake stories (O’Toole & Friesen, 2016). They recalled the moment it struck in vivid detail, describing their experiences in terms of what they saw (destruction), heard (sonic boom, screaming children) and felt (fright and fear) as though they were back in that moment similar to flashbulb memory (Brown & Kulik, 1977). Their memories of the early aftermath were similarly vivid (Rubin & Kozin, 1984). This article focuses on how the mood meter (Brackett & Kremenitzer, 2011) was then used (with permission) to further explore the teachers’ perceived affect to enlighten their lived experiences.
In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.
None
Anyone keeping a global tally of recent disasters is likely to be asking: What role will the hazards and disasters of coastal plains play in the lives and economies of 21st century humanity? In this article, we reflect on this question using examples of how different types of coastal land performed during the Christchurch and other earthquake events to examine the complex of coastal-tectonic hazards that are being constructed in the Tokyo megacity
This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.
The Canterbury earthquakes, which involved widespread damage in the February 2011 event and ongoing aftershocks near the Christchurch central business district (CBD), presented decision-makers with many recovery challenges. This paper identifies major government decisions, challenges, and lessons in the early recovery of Christchurch based on 23 key-informant interviews conducted 15 months after the February 2011 earthquake. It then focuses on one of the most important decisions – maintaining the cordon around the heavily damaged CBD – and investigates its impacts. The cordon displaced 50,000 central city jobs, raised questions about (and provided new opportunities for) the long-term viability of downtown, influenced the number and practice of building demolitions, and affected debris management; despite being associated with substantial losses, the cordon was commonly viewed as necessary, and provided some benefits in facilitating recovery. Management of the cordon poses important lessons for planning for catastrophic urban earthquakes around the world.