Search

found 149 results

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Research papers, University of Canterbury Library

This poster discusses several possible approaches by which the nonlinear response of surficial soils can be explicitly modelled in physics-based ground motion simulations, focusing on the relative advantages and limitations of the various methodologies. These methods include fully-coupled 3D simulation models that directly allow soil nonlinearity in surficial soils, the domain reduction method for decomposing the physical domain into multiple subdomains for separate simulation, conventional site response analysis uncoupled from the simulations, and finally, the use of simple empirically based site amplification factors We provide the methodology for an ongoing study to explicitly incorporate soil nonlinearity into hybrid broadband simulations of the 2010-2011 Canterbury, New Zealand earthquakes.

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Research papers, University of Canterbury Library

In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.

Research papers, University of Canterbury Library

In this paper Paul Millar outlines the development of the University of Canterbury Quakebox project, a collaborative venture between the UC CEISMIC Canterbury Earthquakes Digital Archive and the New Zealand Institute of Language Brain and Behaviour to preserve people’s earthquake stories for the purposes of research, teaching and commemoration. The project collected over 700 stories on high definition video, and Millar is now looking at using the corpus to underpin a longitudinal study of post-quake experience.

Research papers, University of Canterbury Library

Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010 and 2016 respectively, highlighted that floor systems can be heavily damaged. At a reduced or full scale, quasi-static experimental tests on structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the drift protocol adopted. This paper provides an overview of the drift protocols which have been assumed in previous relevant experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the Recast floor project at the University of Canterbury. Finally, major limits of current loading protocols, and areas of future research, are identified.

Research papers, University of Canterbury Library

The 14 November 2016 Kaikōura earthquake had major impacts on New Zealand's transport system. Road, rail and port infrastructure was damaged, creating substantial disruption for transport operators, residents, tourists, and business owners in the Canterbury, Marlborough and Wellington regions, with knock-on consequences elsewhere. During both the response and recovery phases, a large amount of information and data relating to the transport system was generated, managed, analysed, and exchanged within and between organisations to assist decision making. To improve information and data exchanges and related decision making in the transport sector during future events and guide new resilience strategies, we present key findings from a recent post-earthquake assessment. The research involved 35 different stakeholder groups and was conducted for the Ministry of Transport. We consider what transport information was available, its usefulness, where it was sourced from, mechanisms for data transfer between organisations, and suggested approaches for continued monitoring.

Research papers, Lincoln University

This report forms part of a research project examining rural community resilience to natural hazard events, with a particular focus on transient population groups. A preliminary desktop and scoping exercise was undertaken to examine nine communities affected by the Kaikoura earthquake and to identify the variety of transient population groups that are commonly (and increasingly) found in rural New Zealand (see Wilson & Simmons, 2017). From this, four case study communities – Blenheim, Kaikoura, Waiau and St Arnaud – were selected to represent a range of settlement types. These communities varied in respect of social, economic and geographic features, including the presence of particular transient population groups, and earthquake impact. While the 2016 Kaikoura earthquake provided a natural hazard event on which to focus the research, the research interest was in long-term (and broad) community resilience, rather than short-term (and specific) response and recovery actions which occurred post-earthquake.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript

Research papers, Lincoln University

The Canterbury earthquakes that happened in 2010 and 2011 have attracted many migrant workers to the region to assist with the rebuilding effort. However, research on the impact of influx of migrants on the labour market outcomes of a local industry post-disaster is limited internationally and locally. The main objective of this study is to examine the impact of the Canterbury earthquakes on the changes in demographic composition and occupational structure for the local and foreign workers in the Greater Christchurch construction industry. Replicating the discrete dependent variable regression methods used in the study by Sisk and Bankston III (2014), this study also aimed to compare their findings on the impact of the influx of migrants on the New Orleans construction industry with outcomes in Greater Christchurch. Customised data from New Zealand Censuses 2006 and 2013 were used to represent the pre- and post-earthquake periods. This study found that the rebuild has provided opportunities for migrant workers to enter the Greater Christchurch construction industry. The increased presence of migrant construction workers did not displace the locals. In fact, the likelihoods for both locals’ and migrants’ participation in the industry improved post-earthquakes. The earthquakes also increased overall workers’ participation at the lowest end of the occupational structure. However, the earthquakes created few significant changes to the distribution of local and migrant workers at the various occupational levels in the industry. Local workers still dominated all occupational levels post-earthquakes. The aggregated education levels of the construction workers were higher post-earthquakes, particularly among the migrant workers. Overall, migrant workers in the Greater Christchurch construction industry were more diverse, more educated and participated in higher occupational levels than migrants assisting in the New Orleans rebuild, due possibly to differences in immigration policies between New Zealand and the United States of America.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.

Research papers, The University of Auckland Library

Terminus calving of icebergs is a common mass-loss mechanism from water-terminating glaciers globally, including the lake-calving glaciers in New Zealand’s central Southern Alps. Calving rates can increase dramatically in response to increases in ice velocity and/or retreat of the glacier margin. Here, we describe a large calving event (c. 4.5 × 106 m3) observed at Tasman Glacier, which initiated around 30 min after the MW 6.2 Christchurch earthquake of 22 February 2011. The volume of this calving event was equalled or exceeded only once in a subsequent 13-month-long study. While the temporal association with the earthquake remains intriguing, the effects of any preconditioning factors remain unclear.

Research papers, Lincoln University

The Kaikoura earthquake in November 2016 highlighted the vulnerability of New Zealand’s rural communities to locally-specific hazard events, which generate regional and national scale impacts. Kaikoura was isolated with significant damage to both the east coast road (SH1) and rail corridor, and the Inland Road (Route 70). Sea bed uplift along the coast was significant – affecting marine resources and ocean access for marine operators engaged in tourism and harvesting, and recreational users. While communities closest to the earthquake epicentre (e.g., Kaikoura, Waiau, Rotherham and Cheviot) suffered the most immediate earthquake damage, the damage to the transport network, and the establishment of an alternative transport route between Christchurch and Picton, has significantly impacted on more distant communities (e.g., Murchison, St Arnaud and Blenheim). There was also considerable damage to vineyard infrastructure across the Marlborough region and damage to buildings and infrastructure in rural settlements in Southern Marlborough (e.g., Ward and Seddon).

Research papers, University of Canterbury Library

essential systems upon which the well-being and functioning of societies depend. They deliver a service or a good to the population using a network, a combination of spatially-distributed links and nodes. As they are interconnected, network elements’ functionality is also interdependent. In case of a failure of one component, many others could be momentarily brought out-of-service. Further problems arise for buried infrastructure when it comes to buried infrastructure in earthquake and liquefaction-prone areas for the following reasons: • Technically more demanding inspections than those required for surface horizontal infrastructure • Infrastructure subject to both permanent ground displacement and transient ground deformation • Increase in network maintenance costs (i.e. deterioration due to ageing material and seismic hazard) These challenges suggest careful studies on network resilience will yield significant benefits. For these reasons, the potable water network of Christchurch city (Figure 1) has been selected for its well-characterized topology and its extensive repair dataset.

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Research papers, University of Canterbury Library

The Stone Jug Fault (SJF) ruptured during the November 14th, 2016 (at 12:02 am), Mw 7.8 Kaikōura Earthquake which initiated ~40 km west-southwest of the study area, at a depth of approximately 15 km. Preliminary post-earthquake mapping indicated that the SJF connects the Conway-Charwell and Hundalee faults, which form continuous surface rupture, however, detailed study of the SJF had not been undertaken prior to this thesis due to its remote location and mountainous topography. The SJF is 19 km long, has an average strike of ~160° and generally carries approximately equal components of sinistral and reverse displacement. The primary fault trace is sigmoidal in shape with the northern and southern tips rotating in strike from NNW to NW, as the SJF approaches the Hope and Hundalee faults. It comprises several steps and bends and is associated with many (N=48) secondary faults, which are commonly near irregularities in the main fault geometry and in a distributed fault zone at the southern tip. The SJF is generally parallel to Torlesse basement bedding where it may utilise pre-existing zones of weakness. Horizontal, vertical and net displacements range up to 1.4 m, with displacement profiles along the primary trace showing two main maxima separated by a minima towards the middle and ends of the fault. Average net displacement along the primary trace is ~0.4m, with local changes in relative values of horizontal and vertical displacement at least partly controlled by fault strike. Two trenches excavated across the northern segment of the fault revealed displacement of mainly Holocene stratigraphy dated using radiocarbon (N=2) and OSL (N=4) samples. Five surface-rupturing paleoearthquakes displaying vertical displacements of <1 m occurred at: 11,000±1000, 7500±1000, 6500±1000, 3500±100 and 3 (2016 Kaikōura) years BP. These events produce an average slip rate since ~11 ka of 0.2-0.4 mm/yr and recurrence intervals of up to 5500 years with an average recurrence interval of 2750 yrs. Comparison of these results with unpublished trench data suggests that synchronous rupture of the Hundalee, Stone Jug, Conway-Charwell, and Humps faults at ~3500 yrs BP cannot be discounted and it is possible that multi-fault ruptures in north Canterbury are more common than previously thought.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence, and the resulting extensive data sets on damaged buildings that have been collected, provide a unique opportunity to exercise and evaluate previously published seismic performance assessment procedures. This poster provides an overview of the authors’ methodology to perform evaluations with two such assessment procedures, namely the P-58 guidelines and the REDi Rating System. P-58, produced by the Federal Emergency Management Agency (FEMA) in the United States, aims to facilitate risk assessment and decision-making by quantifying earthquake ground shaking, structural demands, component damage and resulting consequences in a logical framework. The REDi framework, developed by the engineering firm ARUP, aids stakeholders in implementing resilience-based earthquake design. Preliminary results from the evaluations are presented. These have the potential to provide insights on the ability of the assessment procedures to predict impacts using “real-world” data. However, further work remains to critically analyse these results and to broaden the scope of buildings studied and of impacts predicted.

Research papers, University of Canterbury Library

In this paper, we perform hybrid broadband (0-10 Hz) ground motion simulations for the ten most significant events (Mw 4.7-7.1) in the 2010-2011 Canterbury earthquake sequence. Taking advantage of having repeated recordings at same stations, we validate our simulations using both recordings and an empirically-developed ground motion prediction equation (GMPE). The simulation clearly captures the sedimentary basin amplification and the rupture directivity effects. Quantitative comparisons of the simulations with both recordings and the GMPE, as well as analyses of the total residuals (indicating model bias) show that simulations perform better than the empirical GMPE, especially for long period. To scrutinize the ground motion variability, we partitioned the total residuals into different components. The total residual appears to be unbiased, and the use of a 3D velocity structure reduces the long period systematic bias particularly for stations located close to the Banks Peninsula volcanic area.

Research papers, University of Canterbury Library

The Bachelor of Youth and Community Leadership (BYCL) was launched by the University of Canterbury (UC) in 2020. The genesis of this new degree was a Stage One service-learning course that, in turn, arose from the innovative and active response of many of the university’s students in the aftermath of the Christchurch earthquakes in 2010 and 2011. That innovative action saw the formation of the Student Volunteer Army as well as the adoption of a new set of Graduate Attributes for every undergraduate at the university. The idea of a specialist undergraduate degree that captured this unique chain of events began to take form from 2016. The resulting degree was developed as a flexible, transdisciplinary programme for young (and not so young) leaders wanting an academic grounding for their passions in community leadership and social action. In 2020, the inaugural intake of students commenced their studies. In this reflection, we discuss our experience of teaching within the BYCL for the first time, using a collaborative approach to teaching that we based on what we understand, individually and collectively, to draw on principles of democratic pedagogy.

Research papers, University of Canterbury Library

In this paper we outline the process and outcomes of a multi-agency, multi-sector research collaboration, led by the Canterbury Earthquake Research Authority (CERA). The CERA Wellbeing Survey (CWS) is a serial, cross-sectional survey that is to be repeated six-monthly (in April and September) until the end of the CERA Act, in April 2016. The survey gathers self-reported wellbeing data to supplement the monitoring of the social recovery undertaken through CERA's Canterbury Wellbeing Index. Thereby informing a range of relevant agency decision-making, the CWS was also intended to provide the community and other sectors with a broad indication of how the population is tracking in the recovery. The primary objective was to ensure that decision-making was appropriately informed, with the concurrent aim of compiling a robust dataset that is of value to future researchers, and to the wider, global hazard and disaster research endeavor. The paper begins with an outline of both the Canterbury earthquake sequence, and the research context informing this collaborative project, before reporting on the methodology and significant results to date. It concludes with a discussion of both the survey results, and the collaborative process through which it was developed.

Research papers, University of Canterbury Library

This article examines the representation of Christchurch, New Zealand, student radio station RDU in the exhibition Alternative Radio at the Canterbury Museum in 2016. With the intention of ‘making visible what is invisible’ about radio broadcasting, the exhibition articulated RDU as a point of interconnection between the technical elements of broadcasting, the social and musical culture of station staff and volunteers, and the broader local and national music scenes. This paper is grounded in observations of the exhibitions and associated public programmes, and interviews with the key participants in the exhibition including the museum's exhibition designer and staff from RDU, who acted as independent practitioners in collaboration with the museum. Alternative Radio also addressed the aftermath of the major earthquake of 22 February 2011, when RDU moved into a customised horse truck after losing its broadcast studio. The exhibition came about because of the cultural resonance of the post-quake story, but also emphasised the long history of the station before that event, and located this small student radio station in the broader heritage discourse of the Canterbury museum, activating the historical, cultural, and personal memories of the station's participants and audiences.

Research papers, University of Canterbury Library

In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.

Research papers, Lincoln University

Memorial design in the West has been explored in depth (Stevens and Franck, 2016; Williams, 2007), and for landscape architects it presents opportunities and challenges. However, there is little in the English language literature about memorial design in China. How have Chinese designers responded to the commemorative settings of war and disaster? This study will adopt the method of case study to analyse two of the most representative memorials in China: Nanjing Massacre Memorial Hall (war) and Tangshan Earthquake Memorial Hall (disaster). Both landscapes have undergone three or four renovations and extensions in the last four decades, demonstrating the practical effects of the Chinese landscape theory. These examples of responses to trauma through memorial landscape interventions are testimonies to the witnesses, victims, abusers, ordinary people, youth and the place where the tragedy took place. This study will explore the reconstruction and expansion of the two memorials under the background of China's policies on memorial landscapes in different periods, as well as their functions of each stage. The research will examine how existing Chinese memorial theories exhibit unique responses at different times in response to the sadness and needs experienced by different users. Key Words:memorial landscape; memorial language; victims; descriptive; architecture; experence; disaster; memorial hall; landscape development; Chinese memorial; war.

Research papers, University of Canterbury Library

With the occurrence of natural disasters on the increase, major cities around the world face the potential of complete loss of infrastructure due to design guidelines that do not consider resilience in the design. With the February 22nd, 2011 earthquake in Christchurch, being the largest insured event, lessons learnt from the rebuild will be vital for the preparation of future disasters. Therefore the objective of this research is to understand the financial implications of the changes to the waste water design guidelines used throughout the five year rebuild programme of works. The research includes a study of the SCIRT alliance model selected for the delivery that is flexible enough to handle changes in the design with minimal impact on the direct cost of the rebuild works. The study further includes the analysis and compares the impact of the three different guidelines on maintenance and replacement cost over the waste water pipe asset life. The research concludes that with the varying ground conditions in Christchurch and also the wide variety of materials in use in the waste water network up to the start of the CES, the rebuild was not a ‘one size fits all’ approach.

Research papers, University of Canterbury Library

This article discusses the use of radio after major earthquakes in Christchurch, New Zealand, in 2010 and 2011. It draws on archival sources to retrospectively research post-quake audiences in the terms people used during and soon after the earthquakes through personal narratives and Twitter. Retrospective narratives of earthquake experiences affirm the value of radio for communicating the scale of disaster and comforting listeners during dislocation from safe home spaces. In the narratives radio is often compared with television, which signifies electricity supply and associated comfort but also visually confirms the city’s destruction. Twitter provides insights into radio use from within the disaster period, but its more global reach facilitates reflection on online and international radio from outside the disaster-affected area. This research demonstrates the value of archival audience research, and finds that the combination of online radio and Twitter enables a new form of participatory disaster spectatorship from afar.

Research papers, University of Canterbury Library

Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).

Research papers, University of Canterbury Library

Natural catastrophes are increasing worldwide. They are becoming more frequent but also more severe and impactful on our built environment leading to extensive damage and losses. Earthquake events account for the smallest part of natural events; nevertheless seismic damage led to the most fatalities and significant losses over the period 1981-2016 (Munich Re). Damage prediction is helpful for emergency management and the development of earthquake risk mitigation projects. Recent design efforts focused on the application of performance-based design engineering where damage estimation methodologies use fragility and vulnerability functions. However, the approach does not explicitly specify the essential criteria leading to economic losses. There is thus a need for an improved methodology that finds the critical building elements related to significant losses. The here presented methodology uses data science techniques to identify key building features that contribute to the bulk of losses. It uses empirical data collected on site during earthquake reconnaissance mission to train a machine learning model that can further be used for the estimation of building damage post-earthquake. The first model is developed for Christchurch. Empirical building damage data from the 2010-2011 earthquake events is analysed to find the building features that contributed the most to damage. Once processed, the data is used to train a machine-learning model that can be applied to estimate losses in future earthquake events.

Research papers, Lincoln University

At 00:02 on 14 November, 2016 a destructive 7.8 Mw earthquake struck the North Canterbury region of New Zealand’s South Island. Prior to and following the earthquake, natural and social scientists conducted a significant amount of research on the resilience processes and recovery efforts in North Canterbury. This thesis examines community resilience in Kaikōura, a small town and district greatly impacted by the earthquake. Community resilience has been widely used in disaster risk reduction research, policy, and practice to describe how a group of individuals within a boundary respond to events, hazards, and shifts in their everyday life. Using exploratory inquiry, this thesis adopts qualitative research methods including document analysis, 24 semi-structured interviews, and participant observation to explore the idea that the recent scholarly emphasis on resilience has come at the expense of critical engagement with the complexities of communities. I draw on the idea of ‘collectives’ (comprising community-based organisations or less formal social networks with a shared purpose) as a lens to consider how, when unexpected life events happen, collectives can be regarded as a resource for change or constancy. The examination of collectives following a disaster can lend insight into the many elements of community as they bring people together in collaboration or drive them apart in conflict. This thesis therefore contributes to an enhanced practical and theoretical understanding of both community and resilience.