Disasters can create the equivalent of 20 years of waste in only a few days. Disaster waste can have direct impacts on public health and safety, and on the environment. The management of such waste has a great direct cost to society in terms of labor, equipment, processing, transport and disposal. Disaster waste management also has indirect costs, in the sense that slow management can slow down a recovery, greatly affecting the ability of commerce and industry to re-start. In addition, a disaster can lead to the disruption of normal solid waste management systems, or result in inappropriate management that leads to expensive environmental remediation. Finally, there are social impacts implicit in disaster waste management decisions because of psychological impact we expect when waste is not cleared quickly or is cleared too quickly. The paper gives an overview of the challenge of disaster waste management, examining issues of waste quantity and composition; waste treatment; environmental, economic, and social impacts; health and safety matters; and planning. Christchurch, New Zealand, and the broader region of Canterbury were impacted during this research by a series of shallow earthquakes. This has led to the largest natural disaster emergency in New Zealand’s history, and the management of approximately 8 million tons of building and infrastructure debris has become a major issue. The paper provides an overview of the status of disaster waste management in Christchurch as a case study. A key conclusion is the vital role of planning in effective disaster waste management. In spite of the frequency of disasters, in most countries the ratio of time spent on planning for disaster waste management to the time spent on normal waste management is extremely low. Disaster waste management also requires improved education or training of those involved in response efforts. All solid waste professionals have a role to play to respond to the challenges of disaster waste management.
Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.
Earthquakes impacting on the built environment can generate significant volumes of waste, often overwhelming existing waste management capacities. Earthquake waste can pose a public and environmental health hazard and can become a road block on the road to recovery. Specific research has been developed at the University of Canterbury to go beyond the current perception of disaster waste as a logistical hurdle, to a realisation that disaster waste management is part of the overall recovery process and can be planned for effectively. Disaster waste decision-makers, often constrained by inappropriate institutional frameworks, are faced with conflicting social, economic and environmental drivers which all impact on the overall recovery. Framed around L’Aquila earthquake, Italy, 2009, this paper discusses the social, economic and environmental effects of earthquake waste management and the impact of existing institutional frameworks (legal, financial and organisational). The paper concludes by discussing how to plan for earthquake waste management.
An earthquake-damaged road in north-east Christchurch. The manhole in the centre of the road has risen and a road cone has been placed in the centre to warn road users. Residents have piled liquefaction from their properties on the side of the road where it will be collection by road maintenance contractors.
Liquefaction piled on the sides of a road in north-east Christchurch. The liquefaction has been dug out of the properties and piled on the side of the road to be collected by road maintenance contractors.
A collapsed section of road in north-east Christchurch. In the background, residents have piled liquefaction from their properties on the side of the road where it will be collected by road maintenance contractors.
Residents working to clear liquefaction from their properties in north-east Christchurch. The liquefaction has been piled on the side of the road where it will be collected by road maintenance contractors.
A collapsed section of road in north-east Christchurch. In the background, residents have piled liquefaction from their properties on the side of the road where it will be collected by road maintenance contractors.
Mounds of liquefaction on the side of a residential road in eastern Christchurch. The liquefaction has been dug out of resident's gardens and placed on the road to be picked up by the City Council.
Residents enjoying a meal after working to clear liquefaction from a property in north-east Christchurch.
A messy demolition site filled with various building waste. At the back is a Waste Management bin filled with rubbish.
Residents using shovels to clear liquefaction from a property in north-east Christchurch.
A resident resting on a digger after clearing liquefaction from his property in the north-east of Christchurch.
A resident using a small digger to clear liquefaction from his property in north-east Christchurch. He is piling the liquefaction on the side of the road where it will be collected.
Workers using a shovel and a wheelbarrow to clear liquefaction from a property. The liquefaction is being piled out the front where it will be collected.
The Master of Engineering Management Project was sponsored by the Canterbury Earthquake Recovery Authority (CERA) and consisted of two phases: The first was an analysis of existing information detailing the effects of hazardous natural events on Canterbury Lifeline Utilities in the past 15 years. The aim of this “Lessons Learned” project was to produce an analysis report that identified key themes from the research, gaps in the existing data and to provide recommendations from these “Lessons Learned.” The Second phase was the development of a practical “Disaster Mitigation Guideline” that outlined lessons in the field of Emergency Sanitation. This research would build upon the first stage and would draw from international reference to develop a guideline that has practical implementation possibilities throughout the world.
Piles of liquefaction on the side of the road in Avonside. The liquefaction has been dug out of people's properties and placed on the road to be picked up by the council. The power boxes and the power pole to the left are on a lean due to liquefaction.
A Christchurch resident loading shovels and a wheelbarrow into the boot of her car after using them to clear liquefaction.
The timeliness and quality of recovery activities are impacted by the organisation and human resourcing of the physical works. This research addresses the suitability of different resourcing strategies on post-disaster demolition and debris management programmes. This qualitative analysis primarily draws on five international case studies including 2010 Canterbury earthquake, 2009 L’Aquila earthquake, 2009 Samoan Tsunami, 2009 Victorian Bushfires and 2005 Hurricane Katrina. The implementation strategies are divided into two categories: collectively and individually facilitated works. The impacts of the implementation strategies chosen are assessed for all disaster waste management activities including demolition, waste collection, transportation, treatment and waste disposal. The impacts assessed include: timeliness, completeness of projects; and environmental, economic and social impacts. Generally, the case studies demonstrate that detritus waste removal and debris from major repair work is managed at an individual property level. Debris collection, demolition and disposal are generally and most effectively carried out as a collective activity. However, implementation strategies are affected by contextual factors (such as funding and legal constraints) and the nature of the disaster waste (degree of hazardous waste, geographical spread of waste etc.) and need to be designed accordingly. Community involvement in recovery activities such as demolition and debris removal is shown to contribute positively to psychosocial recovery.
Recycling is often employed as part of a disaster waste management system. However, the feasibility, method and effectiveness of recycling varies between disaster events. This qualitative study is based on literature reviews, expert interviews and active participatory research of five international disaster events in developed countries (2009 Victorian Bushfires, Australia; 2009 L’Aquila earthquake, Italy; 2005 Hurricane Katrina, United States; 2010 and 2011 Canterbury earthquakes, New Zealand; 2011 Great East Japan earthquake) to answer three questions: What are the main factors that affect the feasibility of recycling post-disaster? When is on-site or off-site separation more effective? What management approaches improve recycling effectiveness? Seven disaster-specific factors need to be assessed to determine the feasibility of disaster waste recycling programmes: volume of waste; degree of mixing of waste; human and environmental health hazards; areal extent of the waste; community priorities; funding mechanisms; and existing and disaster-specific regulations. The appropriateness of on or off-site waste separation depends on four factors: time constraints; resource availability; degree of mixing of waste and human and public health hazards. Successful recycling programmes require good management including clear and well enforced policies (through good contracts or regulations) and pre-event planning. Further research into post-disaster recycling markets, funding mechanisms and recycling in developing countries is recommended.
A pile of bricks, insulation, and pieces of chimney flue awaiting collection beside Burwood Road in Burwood.
A group of residents clearing liquefaction from a property in north-east Christchurch. They can be seen using shovels and wheelbarrows to shift the liquefaction.
A digger depositing liquefaction into a truck on Fleete Street in Dallington. When the truck is full, it will take the liquefaction to a dump at Bottle Lake.
Large cracks in a road in Avonside. Road cones have been placed near the cracks to warn road users. In the distance, piles of liquefaction are on the sides of the road. These have been dug out of residents' properties and placed there for there for the City Council to pick up.
Workers using a digger and a front end loader to clear liquefaction from a road in Shirley. A deep puddle of water is visible at the bottom of the photograph.
Photograph captioned by Fairfax, "Gareth James, general manager of the South Island Transpacific Waste Management. Spoiled food being dumped at the Parkhouse Road transfer station".
Overview of the Presentation Jarg: • The seismic context & liquefaction Tom: • Potable Water Supply • Waste Water Network
A photograph of a pile of rubble on the side of a residential road in Christchurch. The material has been removed from a property and placed on the road for the Christchurch City Council to collect.
A photograph of a make-shift toilet in the Christchurch Art Gallery. A sign behind it reads, "Portaloos Department. We know that 80,000 people need loos. We have 900-1800 available or coming, We don't need to be told people need loos. Thank you. We're number one with your number twos!". Signs below this read, "Toilet Occupied", "Toilet Vacant" and, "In Tray". The Art Gallery was used as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake.
Disaster recovery is significantly affected by funding availability. The timeliness and quality of recovery activities are not only impacted by the extent of the funding but also the mechanisms with which funding is prioritised, allocated and delivered. This research addresses the impact of funding mechanisms on the effectiveness and efficiency of post-disaster demolition and debris management programmes. A qualitative assessment of the impacts on recovery of different funding sources and mechanisms was carried out, using the 2010 Canterbury Earthquake as well as other recent international events as case studies. The impacts assessed include: timeliness, completeness, environmental, economic and social impacts. Of the case studies investigated, the Canterbury Earthquake was the only disaster response to rely solely on a privatised approach to insurance for debris management. Due to the low level of resident displacement and low level of hazard in the waste, this was a satisfactory approach, though not ideal. This approach has led to greater organisational complexity and delays. For many other events, the potential community wide impacts caused by the prolonged presence of disaster debris means that publicly funded and centrally facilitated programmes appear to be the most common and effective method of managing disaster waste.